Displaying all 2 publications

Abstract:
Sort:
  1. Seah CS, Kasim S, Fudzee MFM, Law Tze Ping JM, Mohamad MS, Saedudin RR, et al.
    Saudi J Biol Sci, 2017 Dec;24(8):1828-1841.
    PMID: 29551932 DOI: 10.1016/j.sjbs.2017.11.024
    Microarray technology has become one of the elementary tools for researchers to study the genome of organisms. As the complexity and heterogeneity of cancer is being increasingly appreciated through genomic analysis, cancerous classification is an emerging important trend. Significant directed random walk is proposed as one of the cancerous classification approach which have higher sensitivity of risk gene prediction and higher accuracy of cancer classification. In this paper, the methodology and material used for the experiment are presented. Tuning parameter selection method and weight as parameter are applied in proposed approach. Gene expression dataset is used as the input datasets while pathway dataset is used to build a directed graph, as reference datasets, to complete the bias process in random walk approach. In addition, we demonstrate that our approach can improve sensitive predictions with higher accuracy and biological meaningful classification result. Comparison result takes place between significant directed random walk and directed random walk to show the improvement in term of sensitivity of prediction and accuracy of cancer classification.
  2. Hui TX, Kasim S, Aziz IA, Fudzee MFM, Haron NS, Sutikno T, et al.
    BMC Bioinformatics, 2024 Jan 12;25(1):23.
    PMID: 38216898 DOI: 10.1186/s12859-024-05632-w
    BACKGROUND: With the exponential growth of high-throughput technologies, multiple pathway analysis methods have been proposed to estimate pathway activities from gene expression profiles. These pathway activity inference methods can be divided into two main categories: non-Topology-Based (non-TB) and Pathway Topology-Based (PTB) methods. Although some review and survey articles discussed the topic from different aspects, there is a lack of systematic assessment and comparisons on the robustness of these approaches.

    RESULTS: Thus, this study presents comprehensive robustness evaluations of seven widely used pathway activity inference methods using six cancer datasets based on two assessments. The first assessment seeks to investigate the robustness of pathway activity in pathway activity inference methods, while the second assessment aims to assess the robustness of risk-active pathways and genes predicted by these methods. The mean reproducibility power and total number of identified informative pathways and genes were evaluated. Based on the first assessment, the mean reproducibility power of pathway activity inference methods generally decreased as the number of pathway selections increased. Entropy-based Directed Random Walk (e-DRW) distinctly outperformed other methods in exhibiting the greatest reproducibility power across all cancer datasets. On the other hand, the second assessment shows that no methods provide satisfactory results across datasets.

    CONCLUSION: However, PTB methods generally appear to perform better in producing greater reproducibility power and identifying potential cancer markers compared to non-TB methods.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links