Displaying all 2 publications

Abstract:
Sort:
  1. Malik N, Edwards D, Freckleton RP
    Ecol Evol, 2023 Apr;13(4):e10004.
    PMID: 37091565 DOI: 10.1002/ece3.10004
    The Janzen-Connell hypothesis proposes that density and distance-dependent mortality generated by specialist natural enemies prevent competitive dominance. Much literature on Janzen-Connell mechanisms comes from the neotropics, and evidence of the role of distance and density-dependence is still relatively sparse. We tested the predictions of the Janzen-Connell hypothesis in a South-East Asian system dominated by mast fruiting species. We hypothesized that seedling survival would decrease with distance and density, seedling growth would increase, and herbivory would decrease, according to the predictions of the Janzen-Connell hypothesis. Experiments were conducted to determine the strength of the Janzen-Connell mechanism by manipulating the density and identity of tree species as a function of the distance from parent trees. Survival of conspecific seedlings was reduced near adult trees of one species, but not another. High densities of seedlings decreased the growth of conspecific seedlings of both species. In both species, herbivory rates decreased with distance in low-density areas. This study indicates that dipterocarp species experienced weak Janzen-Connell effects of distance and density dependence at the growth stage studied. Future studies in this system might focus on earlier life-history stages such as seeds and small seedlings, as well as studying mortality during mast-seeding events.
  2. Cannon PG, O'Brien MJ, Yusah KM, Edwards DP, Freckleton RP
    Ecol Evol, 2020 Dec;10(23):13154-13164.
    PMID: 33304525 DOI: 10.1002/ece3.6906
    Fungal pathogens are implicated in driving tropical plant diversity by facilitating strong, negative density-dependent mortality of conspecific seedlings (C-NDD). Assessment of the role of fungal pathogens in mediating coexistence derives from relatively few tree species and predominantly the Neotropics, limiting our understanding of their role in maintaining hyper-diversity in many tropical forests. A key question is whether fungal pathogen-mediated C-NDD seedling mortality is ubiquitous across diverse plant communities. Using a manipulative shadehouse experiment, we tested the role of fungal pathogens in mediating C-NDD seedling mortality of eight mast fruiting Bornean trees, typical of the species-rich forests of South East Asia. We demonstrate species-specific responses of seedlings to fungicide and density treatments, generating weak negative density-dependent mortality. Overall seedling mortality was low and likely insufficient to promote overall community diversity. Although conducted in the same way as previous studies, we find little evidence that fungal pathogens play a substantial role in determining patterns of seedling mortality in a SE Asian mast fruiting forest, questioning our understanding of how Janzen-Connell mechanisms structure the plant communities of this globally important forest type.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links