Displaying all 2 publications

Abstract:
Sort:
  1. Fauzi MFA, Chen W, Knight D, Hampel H, Frankel WL, Gurcan MN
    J Med Syst, 2019 Dec 18;44(2):38.
    PMID: 31853654 DOI: 10.1007/s10916-019-1515-y
    Tumor budding is defined as the presence of single tumor cells or small tumor clusters (less than five cells) that 'bud' from the invasive front of the main tumor. Tumor budding (TB) has recently emerged as an important adverse prognostic factor for many different cancer types. In colorectal carcinoma (CRC), tumor budding has been independently associated with lymph node metastasis and poor outcome. Pathologic assessment of tumor budding by light microscopy requires close evaluation of tumor invasive front on intermediate to high power magnification, entailing locating the 'hotspot' of tumor budding, counting all TB in one high power field, and generating a tumor budding score. By automating these time-consuming tasks, computer-assisted image analysis tools can be helpful for daily pathology practice, since tumor budding reporting is now recommended on select cases. In this paper, we report our work on the development of a tumor budding detection system in CRC from whole-slide Cytokeratin AE1/3 images, based on de novo computer algorithm that automates morphometric analysis of tumor budding.
  2. Goodman KA, Ou FS, Hall NC, Bekaii-Saab T, Fruth B, Twohy E, et al.
    J Clin Oncol, 2021 09 01;39(25):2803-2815.
    PMID: 34077237 DOI: 10.1200/JCO.20.03611
    PURPOSE: To evaluate the use of early assessment of chemotherapy responsiveness by positron emission tomography (PET) imaging to tailor therapy in patients with esophageal and esophagogastric junction adenocarcinoma.

    METHODS: After baseline PET, patients were randomly assigned to an induction chemotherapy regimen: modified oxaliplatin, leucovorin, and fluorouracil (FOLFOX) or carboplatin-paclitaxel (CP). Repeat PET was performed after induction; change in maximum standardized uptake value (SUV) from baseline was assessed. PET nonresponders (< 35% decrease in SUV) crossed over to the alternative chemotherapy during chemoradiation (50.4 Gy/28 fractions). PET responders (≥ 35% decrease in SUV) continued on the same chemotherapy during chemoradiation. Patients underwent surgery at 6 weeks postchemoradiation. Primary end point was pathologic complete response (pCR) rate in nonresponders after switching chemotherapy.

    RESULTS: Two hundred forty-one eligible patients received Protocol treatment, of whom 225 had an evaluable repeat PET. The pCR rates for PET nonresponders after induction FOLFOX who crossed over to CP (n = 39) or after induction CP who changed to FOLFOX (n = 50) was 18.0% (95% CI, 7.5 to 33.5) and 20% (95% CI, 10 to 33.7), respectively. The pCR rate in responders who received induction FOLFOX was 40.3% (95% CI, 28.9 to 52.5) and 14.1% (95% CI, 6.6 to 25.0) in responders to CP. With a median follow-up of 5.2 years, median overall survival was 48.8 months (95% CI, 33.2 months to not estimable) for PET responders and 27.4 months (95% CI, 19.4 months to not estimable) for nonresponders. For induction FOLFOX patients who were PET responders, median survival was not reached.

    CONCLUSION: Early response assessment using PET imaging as a biomarker to individualize therapy for patients with esophageal and esophagogastric junction adenocarcinoma was effective, improving pCR rates in PET nonresponders. PET responders to induction FOLFOX who continued on FOLFOX during chemoradiation achieved a promising 5-year overall survival of 53%.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links