The aim of this study was obtain a model that maximizes growth and production of inulinase and invertase by Aspergillus niger ATCC 20611, employing response surface methodology (RSM). The RSM with a five-variable and three-level central composite design (CCD) was employed to optimize the medium composition. Results showed that the experimental data could be appropriately fitted into a second-order polynomial model with a coefficient of determination (R2) more than 0.90 for all responses. This model adequately explained the data variation and represented the actual relationships between the parameters and responses. The pH and temperature value of the cultivation medium were the most significant variables and the effects of inoculum size and agitation speed were slightly lower. The intra-extracellular inulinase, invertase production and biomass content increased 10-32 fold in the optimized medium condition (pH 6.5, temperature 30°C, 6% (v/v), inoculum size and 150rpm agitation speed) by RSM compared with medium optimized through the one-factor-at-a-time method. The process development and intensification for simultaneous production of intra-extracellular inulinase (exo and endo inulinase) and invertase from A. niger could be used for industrial applications.
In the present study, 63 polymorphic microsatellite markers related to rice blast resistance genes were fluorescently labelled at the 5'-end with either 6-FAM or HEX using the G5 dye set and incorporated into a multiplex SSR-PCR for the detection of fragments using an automated system. For rice F3 families obtained from crosses between Pongsu Seribu 2 (Malaysian blast resistant cultivar) and Mahsuri (a susceptible rice cultivar), the genotypes for 13 designated multiplex SSR panels were determined. The genotyping assays were performed using a capillary-based ABIPRISM 3100 genetic analyser. The sizes of the SSRs alleles observed in the range from 79 to 324 bp. The observed marker segregation data were analysed using the Chi(2) test. A genetic linkage map covering ten chromosomes and comprising 63 polymorphic SSR markers was constructed, and the distorted loci were localised to linkage groups. The results indicated that distorted loci are presented on eight chromosomes.