Displaying all 6 publications

Abstract:
Sort:
  1. Soedjono ES, Slamet A, Fitriani N, Sumarlan MS, Supriyanto A, Mitha Isnadina DR, et al.
    Heliyon, 2021 Nov;7(11):e08268.
    PMID: 34778575 DOI: 10.1016/j.heliyon.2021.e08268
    Coagulation and flocculation using bittern coagulant are effective methods for processing batik industrial wastewater containing heavy metals and high turbidity. Bittern as residual seawater product from salt production can be used as a natural coagulant as it contains magnesium (Mg2+), chloride (Cl-), and sulfate ions (SO4 2-) which can react with Pb2+ and turbidity to produce precipitation. This study focused on Pb2+ and turbidity removal from batik wastewater by introducing different variations of coagulant doses and variations in fast-stirring speed. Bittern coagulant dosage (v/v) of 5%, 15%, 25%, and 35% were used while fast-stirring speed were 55 rpm, 90 rpm, and 125 rpm. Results of this experiment showed that variations of coagulants and stirring speed to give Pb2+ maximum removal of 99.3% happened when coagulant dose and stirring speed at 35% and 55 rpm, while maximum turbidity removal at 97% happened when coagulant dose and stirring speed was 15 % and 125 rpm, respectively. Optimum dose using Response Surface Methodology (RSM) was at coagulant dose of 25% with 55 rpm, of which Pb2+ and turbidity removal were 99% and 93%, respectively.
  2. Fitriani N, Theresia L, O'Marga TTN, Kurniawan SB, Supriyanto A, Abdullah SRS, et al.
    Heliyon, 2023 Dec;9(12):e22577.
    PMID: 38046171 DOI: 10.1016/j.heliyon.2023.e22577
    The present study investigated the utilization of blood clam shells as a potential substitute for conventional media, as well as the influence of the acclimation time on the efficacy of an intermittent slow sand filter (ISSF) in the treatment of real domestic wastewater. ISSF was operated with 16 h on and 8 h off, focusing on the parameters of turbidity, ammonia, and phosphate. Two media combinations (only blood clam shells [CC] and sand + blood clam shells [SC]) were operated under two different acclimatization periods (14 and 28 d). Results showed that SC medium exhibited significantly higher removal of turbidity (p  0.05) removal of ammonia (23.12 ± 20.2 % vs. 16.77 ± 16.8 %) and phosphate (18.03 ± 11.96 % vs 13.48 ± 12 %). Comparing the acclimatization periods, the 28 d of acclimatization period showed higher overall performances than the 14 d. Further optimizations need to be conducted to obtain an effluent value below the national permissible limit, since the ammonia and phosphate parameters are still slightly higher. SEM analysis confirmed the formation of biofilm on both mediums after 28 d of acclimatization; with further analysis of schmutzdecke formation need to be carried out to enrich the results.
  3. Fitriani N, Kusuma MN, Wirjodirdjo B, Hadi W, Hermana J, Ni'matuzahroh, et al.
    Heliyon, 2020 Sep;6(9):e04967.
    PMID: 33015386 DOI: 10.1016/j.heliyon.2020.e04967
    In a slow sand filter, a biological layer consisting of alluvial mud and various types of microorganisms grows and attaches to the sand media and forms a matrix called schmutzdecke. Changes to several factors, including the quality of raw water, filtration speed, and the addition of media, affect the performance of the slow sand filter unit in producing treated water. Geotextiles can be equipped to improve the performance of a slow sand filter in removing pollutants. The selection of several factors that affect slow sand filter performance can be used as a starting point for the engineering system to determine the best pattern of performance behavior. This approach was carried out by looking at the dynamic behavior patterns of slow sand filter system performance in treating raw water. This research has not yet been conducted extensively. The dynamic behavior pattern approach to the performance of the slow sand filter unit was used to obtain the behavior model for the schmutzdecke layer on the filter. The system dynamic approach focused on treatment scenarios that can determine the behavior of the slow sand filter system. Several factors were assessed, including temperature, turbidity, nutrient concentration, algal concentration, bacteria and dissolved oxygen. Model simulation results show that the comparison of C: N: P values affected the performance of the schmutzdecke layer in removing total coli. The slow sand filter unit was capable of producing treated water with a total amount of coli equal to 0 on the C: N: P values of 85: 5.59: 1.25, respectively, and a 9 cm geotextile thickness.
  4. Matuzahroh N, Fitriani N, Ardiyanti PE, Kuncoro EP, Budiyanto WD, Isnadina DRM, et al.
    Heliyon, 2020 Apr;6(4):e03736.
    PMID: 32280804 DOI: 10.1016/j.heliyon.2020.e03736
    The previous research showed that slow sand filtration (SSF) can remove the total coli by approximately 99% because of the schmutzecke layer in the filter. The presented study aimed to complete the previous research on SSF, especially on the schmuztdecke layer mechanism, to remove total coli. Total coli is a parameter of water quality standard in Indonesia, and the behavior of schmutzdecke affects the total coli removal. In the present study, the raw water from Amprong River was treated using horizontal roughing filter (HRF) and SSF. The variations in SSF rate used were 0.2 and 0.4 m/h. Total coliforms were analyzed using the most probable number test, and schmutzdecke visualization was conducted through scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX). The best coliform concentration in water treated by the combination of HRF and SSF was 4,386 colonies per 100 mL of sample using the filtration rate of 0.2 m/h, and its removal efficiency was 99.60%. However, the quality of water treated by the combination of HRF and SSF did not meet the drinking water quality standard because the removal of total coli must be 100%. The SEM-EDX visualization results in schmutzdecke showed that the average bacteria in the schmutzdecke layer were small, white, opaque, and circular, with entire edge and flat elevation. The Gram test results showed that the schmutzdecke bacteria consisted of Gram-positive and Gram-negative bacteria with basil as the common cell form.
  5. Arifin SNH, Radin Mohamed RMS, Al-Gheethi AA, Wei LC, Yashni G, Fitriani N, et al.
    Chemosphere, 2022 Jan;287(Pt 3):132278.
    PMID: 34826939 DOI: 10.1016/j.chemosphere.2021.132278
    The study explored the characteristics and effectiveness of modified TiO2 nanotubes with zeolite as a composite photocatalyst (MTNZC) for the degradation of triclocarban (TCC) from the aqueous solution. MTNZC samples have been produced via electrochemical anodisation (ECA) followed by electrophoretic deposition (EPD). Three independent factors selected include MTNZC size (0.5-1 cm2), pH (3-10), and irradiation time (10-60 min). The observation revealed that the surface of Ti substrate by the 40 V of anodisation and 3 h of calcination was covered with the array ordered, smooth and optimum elongated nanotubes with average tube length was approximately 5.1 μm. EDS analysis proved the presence of Si, Mg, Al, and Na on MTNZC due to the chemical composition present in the zeolite. The average crystallite size of TiO₂ nanotubes increased from 2.07 to 3.95 nm by increasing anodisation voltage (10, 40, and 60 V) followed by 450 °C of calcination for 1, 3, and 6 h, respectively. The optimisation by RSM shows the F-value (36.12), the p-value of all responses were less than 0.0001, and the 95% confidence level of the model by all the responses indicated the model was significant. The R2 in the range of 0.9433-0.9906 showed the suitability of the model to represent the actual relationship among the parameters. The photocatalytic degradation rate of TCC from the first and the fifth cycles were 94.2 and 77.4%, indicating the applicability of MTNZC to be used for several cycles.
  6. Sanjaya GY, Fauziah K, Pratama RA, Fitriani NA, Setiawan MY, Fauziah IA, et al.
    Med J Malaysia, 2024 Mar;79(2):176-183.
    PMID: 38553923
    INTRODUCTION: Assessment of data quality in the era of big data is crucial for effective data management and use. However, there are gaps in data quality assessment for routine health data to ensure accountability. Therefore, this research aims to improve the routine health data quality that have been collected and integrated into Aplikasi Satu Data Kesehatan (ASDK) as the primary health data system in Indonesia.

    MATERIALS AND METHODS: This descriptive study utilises a desk review approach and employs the WHO Data Quality Assurance (DQA) Tool to assess data quality of ASDK. The analysis involves measuring eight health indicators from ASDK and Survei Status Gizi Indonesia (SSGI) conducted in 2022. The assessment focuses on various dimensions of data quality, including completeness of variables, consistency over time, consistency between indicators, outliers and external consistency.

    RESULTS: Current study shows that routine health data in Indonesia performs high-quality data in terms of completeness and internal consistency. The dimension of data completeness demonstrates high levels of variable completeness with most variables achieving 100% of the completeness.

    CONCLUSION: Based on the analysis of eight routine health data variables using five dimensions of data quality namely completeness of variables, consistency over time, consistency between indicators, outliers. and external consistency. It shows that completeness and internal consistency of data in ASDK has demonstrated a high data quality.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links