Displaying all 5 publications

Abstract:
Sort:
  1. Fish-Low CY, Abubakar S, Othman F, Chee HY
    Malays J Pathol, 2019 Apr;41(1):41-46.
    PMID: 31025636
    INTRODUCTION: Dengue virus (DENV), the causative agent of dengue disease exists in sylvatic and endemic ecotypes. The cell morphological changes and viral morphogenesis of two dengue ecotypes were examined at the ultrastructural level to identify potential similarities and differences in the surrogate model of enzootic host.

    MATERIALS AND METHODS: Vero cells were inoculated with virus at a multiplicity of infection (MOI) of 0.1. Cell cultures were harvested over a time course and processed for transmission electron microscopic imaging.

    RESULTS: The filopodia protrusions on cell periphery preceded virus entry. Additionally, sylvatic DENV infection was found spreading slower than the endemic DENV. Morphogenesis of both dengue ecotypes was alike but at different level of efficiency in the permissive cells.

    CONCLUSIONS: This is the first ultrastructural study on sylvatic DENV and this comparative study revealed the similarities and differences of cellular responses and morphogenesis of two dengue ecotypes in vitro. The study revealed the weaker infectivity of sylvatic DENV in the surrogate model of enzootic host, which supposed to support better replication of enzootic DENV than endemic DENV.

  2. Fish-Low CY, Abu Bakar S, Othman F, Chee HY
    Trop Biomed, 2018 Dec 01;35(4):1154-1159.
    PMID: 33601863
    Dengue virus (DENV) is maintained and circulated in both sylvatic/enzootic and endemic/human cycles and spill over infection of sylvatic DENV into human populations has been reported. Extensive deforestation and increase human activities in forest may increase the risk of human exposure to sylvatic dengue infection and this may become a threat to human. Present study investigated the changes in cell morphology and viral morphogenesis upon infection with sylvatic and endemic ecotypes in human monocytic U-937 cells using transmission electron microscopy. Autophagy, a process that is either pro-viral or anti-viral, was observed in U-937 cells of both infections, however only the replication of endemic DENV was evidenced. An insight into the infection responses of sylvatic progenitors of DENV in susceptible host cells may provide better understanding on dengue emergence in human populations.
  3. Fish-Low CY, Than LTL, Ling KH, Sekawi Z
    J Proteome Res, 2024 Sep 06;23(9):4027-4042.
    PMID: 39150348 DOI: 10.1021/acs.jproteome.4c00376
    Leptospirosis, a notifiable endemic disease in Malaysia, has higher mortality rates than regional dengue fever. Diverse clinical symptoms and limited diagnostic methods complicate leptospirosis diagnosis. The demand for accurate biomarker-based diagnostics is increasing. This study investigated the plasma proteome of leptospirosis patients with leptospiraemia and seroconversion compared with dengue patients and healthy subjects using isobaric tags for relative and absolute quantitation (iTRAQ)-mass spectrometry (MS). The iTRAQ analysis identified a total of 450 proteins, which were refined to a list of 290 proteins through a series of exclusion criteria. Differential expression in the plasma proteome of leptospirosis patients compared to the control groups identified 11 proteins, which are apolipoprotein A-II (APOA2), C-reactive protein (CRP), fermitin family homolog 3 (FERMT3), leucine-rich alpha-2-glycoprotein 1 (LRG1), lipopolysaccharide-binding protein (LBP), myosin-9 (MYH9), platelet basic protein (PPBP), platelet factor 4 (PF4), profilin-1 (PFN1), serum amyloid A-1 protein (SAA1), and thrombospondin-1 (THBS1). Following a study on a verification cohort, a panel of eight plasma protein biomarkers was identified for potential leptospirosis diagnosis: CRP, LRG1, LBP, MYH9, PPBP, PF4, SAA1, and THBS1. In conclusion, a panel of eight protein biomarkers offers a promising approach for leptospirosis diagnosis, addressing the limitations of the "one disease, one biomarker" concept.
  4. Fish-Low CY, Than LTL, Ling KH, Lin Q, Sekawi Z
    J Microbiol Immunol Infect, 2020 Feb;53(1):157-162.
    PMID: 31029530 DOI: 10.1016/j.jmii.2018.12.015
    BACKGROUND: Human leptospirosis, or commonly known as "rat urine disease" is a zoonotic disease that is caused by the bacteria called Leptospira sp. The incidence rate of leptospirosis has been under-reported due to its unspecific clinical symptoms and the limitations of current laboratory diagnostic methods. Leptospirosis can be effectively treated with antibiotics in the early stage, and it is a curable disease but the accuracy to diagnose the infection is rarely achieved.

    METHODS: The present pilot study investigated plasma protein profiles of leptospirosis patients and compared them against two control groups which consisted of dengue patients and healthy individuals. The plasma protein digests were analyzed using shotgun approach by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Protein abundances were estimated from the exponentially modified protein abundance index (emPAI) values. Plasma proteins in leptospirosis patients with at least two-fold differential expression compared to dengue and healthy control groups (p 

  5. Fish-Low CY, Balami AD, Than LTL, Ling KH, Mohd Taib N, Md Shah A, et al.
    J Infect Public Health, 2020 Feb;13(2):216-220.
    PMID: 31455598 DOI: 10.1016/j.jiph.2019.07.021
    BACKGROUND: Underestimation of leptospirosis cases is happening in many countries. The most common factor of underreporting is misdiagnosis. Considering the limitations of direct detection of pathogen and serological diagnosis for leptospirosis, clinical features and blood tests though non-specific are usually referred in making presumptive diagnosis to decide disease management.

    METHODS: In this single-centre retrospective study, comparative analysis on clinical presentations and laboratory findings was performed between confirmed leptospirosis versus non-leptospirosis cases.

    RESULTS: In multivariate logistic regression evidenced by a Hosmer-Lemeshow significance value of 0.979 and Nagelkerke R square of 0.426, the predictors of a leptospirosis case are hypocalcemia (calcium <2.10mmol/L), hypochloremia (chloride <98mmol/L), and eosinopenia (absolute eosinophil count <0.040×109/L). The proposed diagnostic scoring model has a discriminatory power with area under the curve (AUC) 0.761 (p<0.001). A score value of 6 reflected a sensitivity of 0.762, specificity of 0.655, a positive predictive value of 0.38, negative predictive value of 0.91, a positive likelihood ratios of 2.21, and a negative likelihood ratios of 0.36.

    CONCLUSION: With further validation in clinical settings, implementation of this diagnostic scoring model is helpful to manage presumed leptospirosis especially in the absence of leptospirosis confirmatory tests.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links