Displaying all 2 publications

Abstract:
Sort:
  1. Iwanaga H, Teshima KM, Khatab IA, Inomata N, Finkeldey R, Siregar IZ, et al.
    Ecol Evol, 2012 Jul;2(7):1663-75.
    PMID: 22957170 DOI: 10.1002/ece3.284
    Distribution of tropical rainforests in Southeastern Asia has changed over geo-logical time scale, due to movement of tectonic plates and/or global climatic changes. Shorea parvifolia is one of the most common tropical lowland rainforest tree species in Southeastern Asia. To infer population structure and demographic history of S. parvifolia, as indicators of temporal changes in the distribution and extent of tropical rainforest in this region, we studied levels and patterns of nucleotide polymorphism in the following five nuclear gene regions: GapC, GBSSI, PgiC, SBE2, and SODH. Seven populations from peninsular Malaysia, Sumatra, and eastern Borneo were included in the analyses. STRUCTURE analysis revealed that the investigated populations are divided into two groups: Sumatra-Malay and Borneo. Furthermore, each group contained one admixed population. Under isolation with migration model, divergence of the two groups was estimated to occur between late Pliocene (2.6 MYA) and middle Pleistocene (0.7 MYA). The log-likelihood ratio tests of several demographic models strongly supported model with population expansion and low level of migration after divergence of the Sumatra-Malay and Borneo groups. The inferred demographic history of S. parvifolia suggested the presence of a scarcely forested land bridge on the Sunda Shelf during glacial periods in the Pleistocene and predominance of tropical lowland rainforest at least in Sumatra and eastern Borneo.
  2. Ohtani M, Kondo T, Tani N, Ueno S, Lee LS, Ng KK, et al.
    Mol Ecol, 2013 Apr;22(8):2264-79.
    PMID: 23432376 DOI: 10.1111/mec.12243
    Tropical rainforests in South-East Asia have been affected by climatic fluctuations during past glacial eras. To examine how the accompanying changes in land areas and temperature have affected the genetic properties of rainforest trees in the region, we investigated the phylogeographic patterns of a widespread dipterocarp species, Shorea leprosula. Two types of DNA markers were used: expressed sequence tag-based simple sequence repeats and chloroplast DNA (cpDNA) sequence variations. Both sets of markers revealed clear genetic differentiation between populations in Borneo and those in the Malay Peninsula and Sumatra (Malay/Sumatra). However, in the south-western part of Borneo, genetic admixture of the lineages was observed in the two marker types. Coalescent simulation based on cpDNA sequence variation suggested that the two lineages arose 0.28-0.09 million years before present and that following their divergence migration from Malay/Sumatra to Borneo strongly exceeded migration in the opposite direction. We conclude that the genetic structure of S. leprosula was largely formed during the middle Pleistocene and was subsequently modified by eastward migration across the subaerially exposed Sunda Shelf.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links