Materials and Methods: An in vitro study was undertaken in which extract of T. cordifolia was obtained using 100% ethanol by maceration. Seven different concentrations were prepared and tested against S. mutans in brain-heart infusion agar medium. Plates were incubated aerobically at 37°C for 48 h, and zone of inhibition was measured using Vernier caliper. 0.2% chlorhexidine and dimethylformamide were used as positive and negative controls respectively. The data were analysed by descriptive analytic tests.
Results: The maximum antibacterial activity of T. cordifolia was observed with a volume of 40 μl at 2% concentration with a zone of inhibition of 19 mm. A 30 μl volume of 0.2% chlorhexidine showed a zone of inhibition of 28 mm, and no zone of inhibition was observed with dimethylformamide.
Conclusion: Tinospora exhibited antimicrobial activity against S. mutans. However, it needs to be confirmed further with in vivo studies.
Materials and Methods: This in vivo study was conducted on 80 participants with an age range of 15-40 years. Thirty were included as controls and 50 participants were treated with fixed orthodontic appliances. Saliva and blood samples were collected at five different periods, before insertion of fixed orthodontic appliance and at 1 week, 3 months, 1 year, and 1.5 years after insertion of appliance, respectively. The metal ion content in the samples were analyzed by atomic absorption spectrophotometry. Mean levels of nickel, chromium, and zinc in saliva and serum were compared between groups using independent sample t-test and before and after results using paired t-test. P < 0.05 was considered as statistically significant.
Results: At the end of 1.5 years, the mean salivary levels of nickel, chromium, and zinc in controls were 5.02 ppb, 1.27 ppb, and 10.24 ppb, respectively, as compared to 67 ppb, 30.8 ppb, and 164.7 ppb at the end of 1.5 years. This was statistically significant with P < 0.001. A significant increase in the metal ion levels were seen in participants with before and after insertion of appliance (P < 0.001).
Conclusion: Orthodontic appliances do release considerable amounts of metal ions such as nickel, chromium, and zinc in saliva and serum. However, it was within permissible levels and did not reach toxic levels.
METHODS: After translation and cross-cultural adaptation, interviews were conducted with 326 participants of the Temuan tribe from village Kampung Tering in Johol, Negeri Sembilan, Malaysia. The instrument's validity was assessed using the scores of MREALD-30, which were compared based on occupation, monthly household income, educational attainment, general literacy, use of dental services, and three dental outcomes. A questionnaire containing socio-behavioral information and validated Malay Oral Health Impact Profile (M-OHIP-14) was also administered. The reliability of the MREALD-30 was assessed by re-administering it to 30 subjects after two weeks. Its correlations evaluated convergent and discriminative validity of MREALD-30 with the level of education and dental visiting habits, monthly household income, respectively. Predictive validity was assessed with M-OHIP-14, while construct validity was evaluated by exploratory factor analysis using the Rasch model.
RESULTS: The internal consistency of the MREALD-30 measured by Cronbach's alpha was 0.89. The test-retest reliability was excellent (ICC 0.95, k = 0.85). MREALD-30 exhibited good construct validity. Rasch analysis showed two factors, and infit mean-square statistics for MREALD-30 were all within the desired range of 0.50-2.0. The discriminant validity and predictive validity were statistically significant (p
METHODS: This cross-sectional study included final-year undergraduate dental students (N = 645) who completed a pre-tested self-administered questionnaire that analysed the domains of perceived knowledge, practice, critical appraisal and attitude towards evidence-based dentistry. We further explored the association between these domains with the type of curriculum, sex, prior research experience and EBD training.
RESULTS: A total of (n = 526) students participated (response rate of 81.55%). About 92% knew about evidence-based dentistry. Whilst 58% had undergone formal training in evidence-based dentistry, 90% of the respondents showed an overall positive attitude towards evidence-based dentistry. However, only 45% of them practised it most of the time. Schools with an integrated curriculum showed more willingness and practised evidence-based dentistry more frequently (p
OBJECTIVES: To evaluate the effects of sealants compared to no sealant or a different sealant in preventing pit and fissure caries on the occlusal surfaces of primary molars in children and to report the adverse effects and the retention of different types of sealants.
SEARCH METHODS: An information specialist searched four bibliographic databases up to 11 February 2021 and used additional search methods to identify published, unpublished and ongoing studies. Review authors scanned the reference lists of included studies and relevant systematic reviews for further studies.
SELECTION CRITERIA: We included parallel-group and split-mouth randomised controlled trials (RCTs) that compared a sealant with no sealant, or different types of sealants, for the prevention of caries in primary molars, with no restriction on follow-up duration. We included studies in which co-interventions such as oral health preventive measures, oral health education or tooth brushing demonstrations were used, provided that the same adjunct was used with the intervention and comparator. We excluded studies with complex interventions for the prevention of dental caries in primary teeth such as preventive resin restorations, or studies that used sealants in cavitated carious lesions.
DATA COLLECTION AND ANALYSIS: Two review authors independently screened search results, extracted data and assessed risk of bias of included studies. We presented outcomes for the development of new carious lesions on occlusal surfaces of primary molars as odds ratios (OR) with 95% confidence intervals (CIs). Where studies were similar in clinical and methodological characteristics, we planned to pool effect estimates using a random-effects model where appropriate. We used GRADE methodology to assess the certainty of the evidence.
MAIN RESULTS: We included nine studies that randomised 1120 children who ranged in age from 18 months to eight years at the start of the study. One study compared fluoride-releasing resin-based sealant with no sealant (139 tooth pairs in 90 children); two studies compared glass ionomer-based sealant with no sealant (619 children); two studies compared glass ionomer-based sealant with resin-based sealant (278 tooth pairs in 200 children); two studies compared fluoride-releasing resin-based sealant with resin-based sealant (113 tooth pairs in 69 children); one study compared composite with fluoride-releasing resin-based sealant (40 tooth pairs in 40 children); and one study compared autopolymerised sealant with light polymerised sealant (52 tooth pairs in 52 children). Three studies evaluated the effects of sealants versus no sealant and provided data for our primary outcome. Due to differences in study design such as age of participants and duration of follow-up, we elected not to pool the data. At 24 months, there was insufficient evidence of a difference in the development of new caries lesions for the fluoride-releasing sealants or no treatment groups (Becker Balagtas odds ratio (BB OR) 0.76, 95% CI 0.41 to 1.42; 1 study, 85 children, 255 tooth surfaces). For glass ionomer-based sealants, the evidence was equivocal; one study found insufficient evidence of a difference at follow-up between 12 and 30 months (OR 0.97, 95% CI 0.63 to 1.49; 449 children), while another with 12-month follow-up found a large, beneficial effect of sealants (OR 0.03, 95% CI 0.01 to 0.15; 107 children). We judged the certainty of the evidence to be low, downgrading two levels in total for study limitations, imprecision and inconsistency. We included six trials randomising 411 children that directly compared different sealant materials, four of which (221 children) provided data for our primary outcome. Differences in age of the participants and duration of follow-up precluded pooling of the data. The incidence of development of new caries lesions was typically low across the different sealant types evaluated. We judged the certainty of the evidence to be low or very low for the outcome of caries incidence. Only one study assessed and reported adverse events, the nature of which was gag reflex while placing the sealant material.
AUTHORS' CONCLUSIONS: The certainty of the evidence for the comparisons and outcomes in this review was low or very low, reflecting the fragility and uncertainty of the evidence base. The volume of evidence for this review was limited, which typically included small studies where the number of events was low. The majority of studies in this review were of split-mouth design, an efficient study design for this research question; however, there were often shortcomings in the analysis and reporting of results that made synthesising the evidence difficult. An important omission from the included studies was the reporting of adverse events. Given the importance of prevention for maintaining good oral health, there exists an important evidence gap pertaining to the caries-preventive effect and retention of sealants in the primary dentition, which should be addressed through robust RCTs.