Displaying all 10 publications

Abstract:
Sort:
  1. Abdul Razak MA, Hoettges KF, Fatoyinbo HO, Labeed FH, Hughes MP
    Biomicrofluidics, 2013;7(6):64110.
    PMID: 24396544 DOI: 10.1063/1.4842395
    Whilst laboratory-on-chip cell separation systems using dielectrophoresis are increasingly reported in the literature, many systems are afflicted by factors which impede "real world" performance, chief among these being cell loss (in dead spaces, attached to glass and tubing surfaces, or sedimentation from flow), and designs with large channel height-to-width ratios (large channel widths, small channel heights) that make the systems difficult to interface with other microfluidic systems. In this paper, we present a scalable structure based on 3D wells with approximately unity height-to-width ratios (based on tubes with electrodes on the sides), which is capable of enriching yeast cell populations whilst ensuring that up to 94.3% of cells processed through the device can be collected in tubes beyond the output.
  2. Abbasi MA, Ijaz M, Aziz-Ur-Rehman -, Siddiqui SZ, Ali Shah SA, Shahid M, et al.
    Pak J Pharm Sci, 2020 Jul;33(4):1609-1616.
    PMID: 33583794
    In the planned research work, the nucleophilic substitution reaction of 1-[(E)-3-phenyl-2-propenyl]piperazine (1) was carried out with different sulfonyl chlorides (2a-g) at pH 9-10 to synthesize its different N-sulfonated derivatives (3a-g). The structures of the synthesized compounds were characterized by their proton-nuclear magnetic resonance (1H-NMR), carbon-nuclear magnetic resonance (13C-NMR) and Infra Red (IR) spectral data, along with CHN analysis. The inhibition potential of the synthesized molecules was ascertained against two bacterial pathogenic strains i.e. Bacillus subtilis and Escherichia coli. It was inferred from the results that some of the compounds were very suitable inhibitors of these bacterial strains. Moreover, their cytotoxicity was also profiled and it was outcome that most of these molecules possessed moderate cytotoxicity.
  3. Khan MZI, Zahra SS, Ahmed M, Fatima H, Mirza B, Haq IU, et al.
    Nat Prod Res, 2019 Jul;33(14):2099-2104.
    PMID: 29873254 DOI: 10.1080/14786419.2018.1482551
    Ipomoea carnea Jacq. is an important folklore medicinal plant, assessed for its underexplored biological potential. Antioxidant, cytotoxic, antiproliferative and polyphenolic profile of whole plant was evaluated using various techniques. Maximum extract recovery (29% w/w), phenolic [13.54 ± 0.27 μg GAE/mg dry weight (DW)] and flavonoid (2.11 ± 0.10 μg QE /mg DW) content were recorded in methanol-distilled water (1:1) flower extract. HPLC-DAD analysis quantified substantial amount of six different polyphenols ranging from 0.081 to 37.95 μg/mg extract. Maximum total antioxidant and reducing potential were documented in methanol-distilled water and acetone-distilled water flower extracts (42.62 ± 0.47 and 24.38 ± 0.39 μg AAE/mg DW) respectively. Ethanol-chloroform root extract manifested highest free radical scavenging (IC50 of 61.22 μg/mL) while 94.64% of the extracts showed cytotoxicity against brine shrimps. Ethanol leaf extract exhibited remarkable activity against THP-1 cell line (IC50 = 8 ± 0.05 μg/mL) and protein kinases (31 mm phenotype bald zone).
  4. Abbasi MA, Fatima Z, Rehman AU, Siddiqui SZ, Ali Shah SA, Shahid M, et al.
    Pak J Pharm Sci, 2019 Sep;32(5):1957-1964.
    PMID: 31813858
    The present study comprises the synthesis of a new series of benzenesulfonamides derived from N-sulfonation of 2-(4-methoxyphenyl)-1-ethanamine (1). The synthesis was initiated by the reaction of 2-(4-methoxyphenyl)-1-ethanamine (1) with benzenesulfonyl chloride (2), to yield N-(4-methoxyphenethyl)benzenesulfonamide (3). This parent molecule 3 was subsequently treated with various alkyl/aralkyl halides (4a-j) in N,N-dimethylformamide (DMF) and in the presence of a weak base lithium hydride (LiH) to obtain various N-(alkyl/aralkyl)-N-(4-methoxyphenethyl) benzenesulfonamides (5a-j). The characterization of these derivatives was carried out by spectroscopic techniques like IR, 1H-NMR, and 13C-NMR. Elemental analysis also supported this data. The biofilm inhibitory action of all the synthesized compounds was carried out on Escherichia coli and some of the compounds were identified to be very suitable inhibitors of this bacterial strain. Furthermore, the molecules were also tested for their cytotoxicity behavior to assess their utility as less cytotoxic therapeutic agents.
  5. Abbasi MA, Zeb A, Rehman A, Siddiqui SZ, Shah SAA, Shahid M, et al.
    Pak J Pharm Sci, 2020 Jan;33(1):41-47.
    PMID: 32122829
    The current research was commenced by reaction of 1,4-benzodioxane-6-amine (1) with 4-nitrobenzenesulfonyl chloride (2) in the presence of aqueous base under dynamic pH control at 9 to yield N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-nitrobenzenesulfonamide (3) which was further reacted with a series of alkyl/aralkyl halides (4a-i) in polar aprotic solvent using catalytic amount of lithium hydride which acts as base to afford some new N-alkyl/aralkyl-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-nitrobenzenesulfonamides (5a-i). The projected structures of all the synthesized derivatives were characterized by contemporary techniques i.e., IR, 1H-NMR and EIMS. The biofilm Inhibitory action of all synthesized molecules was carried out against Escherichia coli and Bacillus subtilis. It was inferred from their results that 5f and 5e exhibited suitable inhibitory action against the biofilms of these bacterial strains. Moreover, their cytotoxicity was also checked and it was concluded that these synthesized molecules displayed docile cytotoxicity.
  6. Nazir M, Abbasi MA, Aziz-Ur-Rehman -, Siddiqui SZ, Ali Shah SA, Shahid M, et al.
    Pak J Pharm Sci, 2019 Nov;32(6):2585-2597.
    PMID: 31969290
    In the study presented here, the nucleophilic substitution reaction of 5-[3-(1H-indol-3-yl)propyl]-1,3,4-oxadiazol-2-ylhydrosulfide was carried out with different alkyl/aralkyl halides (5a-r) to form its different S-substituted derivatives (6a-r), as depicted in scheme 1. The structural confirmation of all the synthesized compounds was done by IR, 1H-NMR, 13C-NMR and CHN analysis data. Bacterial biofilm inhibitory activity of all the synthesized compounds was carried out against Bacillus subtilis and Escherichia coli. The anticancer activity of these molecules was ascertained using anti-proliferation (SRB) assay on HCT 116 Colon Cancer Cell lines while the cytotoxicity of these molecules was profiled for their haemolytic potential. From this investigation it was rational that most of the compounds exhibited suitable antibacterial and anticancer potential along with a temperate cytotoxicity.
  7. Hussain A, Korma SA, Kabir K, Kauser S, Arif MR, Fatima H, et al.
    Plant Foods Hum Nutr, 2024 Feb 15.
    PMID: 38358638 DOI: 10.1007/s11130-024-01153-2
    Momordica charantia L. has been remained a well-known medicinal vegetable used traditionally. However, which part is most effective against which disorder, has been remained undiscovered yet. The objective of this study was to examine the antimicrobial, antihyperlipidemic and antihyperglycemic activities of peel, flesh, and seeds of bitter gourd, through in vitro and in vivo assays. Ethanolic extracts from powders of three fractions of bitter gourd were assessed for antimicrobial potential against bacterial and fungal strains, whereas, powders of these fractions were used to determine antihyperlipidemic and antihyperglycemic activity, in alloxan induced diabetic rats. Our results showed that BSE exhibited better antimicrobial activity against Bacillus cereus, whereas BFE exhibited better against Escherichia coli. Blood glucose was significantly lowered by all three powders in a dose dependent manner, when fed to diabetic rats, with the highest decrease by BSP, which reduced the glucose level from 296.20 ± 2.00 mg/dl to 123.10 ± 0.80 mg/dl, at 15 mg dose, after 28 days trial. Elevated levels of TC (101.18 ± 0.65 mg/dl), TG (83.69 ± 0.61 mg/dl) and LDL-C (25.90 ± 0.09 mg/dl) in positive control rats were lowered down in well manners by BSP at 15 mg dose, to 86.30 ± 0.53, 67.70 ± 0.53 and 19.32 ± 0.06 mg/dl, respectively. As compared to BFP and BPP, BSP showed significant involvement in antibacterial, antihyperglycemic, and antihyperlipidemic actions. Along with the edible flesh, peels and seeds, which are usually discarded as waste, could also be utilized for development of pharma foods capable of promoting health.
  8. Kanakal MM, Abbas SA, Khan A, Sultana S, Fatima H, Tabasssum R, et al.
    PMID: 39082166 DOI: 10.2174/0118715230309053240718122527
    INTRODUCTION: This research aims to create a gel formulation of Brassica juncea leaf extract and assess its anti-inflammatory properties using an in silico study. The anti-inflammatory activity has been compared with Diclofenac molecules in PDB id: 4Z69. Further, the Absorption, Distribution, Metabolism, Excretion, and Toxicity analysis has been performed to ensure the therapeutic potential and safety of the drug development process. The Quality by Design tool has been applied to optimize formulation development.

    METHODS: The extracted gel is characterized by performing Fourier transformer infrared, zeta potential, particle size, Scanning Electron Microscope, and entrapment efficiency. Further, the formulation is evaluated by examining its viscosity, spreadability, and pH measurement. An In vitro study of all nine extract suspensions was conducted to determine the drug contents at 276 nm.

    RESULTS: The optimized suspension has shown the maximum percentage of drug release (82%) in 10 hours of study. Animal study for anti-inflammatory activity was performed, and results of all five groups of animals compared the % inhibition of paw edema at three hours; gel (56.70%), standard (47.86%), and (39.72%) were found.

    CONCLUSION: The research could conclude that the anti-inflammatory activity of gel formulation is high compared to extract, and a molecular docking study validates the anti-inflammatory therapeutic effects. ADMET analysis ensures the therapeutic effects and their safety.

  9. Mahmood T, Vu TT, Campos-Arceiz A, Akrim F, Andleeb S, Farooq M, et al.
    PeerJ, 2021;9:e10738.
    PMID: 33628635 DOI: 10.7717/peerj.10738
    Ecosystem functioning is dependent a lot on large mammals, which are, however, vulnerable and facing extinction risks due to human impacts mainly. Megafauna of Asia has been declining for a long, not only in numbers but also in their distribution ranges. In the current study, we collected information on past and current occurrence and distribution records of Asia's megafauna species. We reconstructed the historical distribution ranges of the six herbivores and four carnivores for comparison with their present ranges, to quantify spatially explicit levels of mega-defaunation. Results revealed that historically the selected megafauna species were more widely distributed than at current. Severe range contraction was observed for the Asiatic lion, three rhino species, Asian elephant, tigers, and tapirs. Defaunation maps generated have revealed the vanishing of megafauna from parts of the East, Southeast, and Southwest Asia, even some protected Areas losing up to eight out of ten megafaunal species. These defaunation maps can help develop future conservation policies, to save the remaining distribution ranges of large mammals.
  10. Rubab K, Abbasi MA, Rehman A, Siddiqui SZ, Shah SAA, Ashraf M, et al.
    Pak J Pharm Sci, 2017 Jul;30(4):1263-1274.
    PMID: 29039324
    The undertaken research was initiated by transforming 2-(1H-Indol-3-yl)acetic acid (1) in catalytic amount of sulfuric acid and ethanol to ethyl 2-(1H-Indol-3-yl)acetate (2), which was then reacted with hydrazine monohydrate in methanol to form 2-(1H-Indol-3-yl)acetohydrazide (3). Further, The reaction scheme was designed into two pathways where, first pathway involved The reaction of 3 with substituted aromatic aldehydes (4a-o) in methanol with few drops of glacial acetic acid to generate 2-(1H-Indol-3-yl)-N'-[(un)substitutedphenylmethylidene]acetohydrazides (5a-o) and in second pathway 3 was reacted with acyl halides (6a-e) in basic aqueous medium (pH 9-10) to afford 2-(1H-Indol-3-yl)-N'-[(un)substitutedbenzoyl/2-thienylcarbonyl]acetohydrazides (7a-e). All The synthesized derivatives were characterized by IR, EI-MS and 1H-NMR spectral techniques and evaluated for their anti-bacterial potentials against Gram positive and Gram negative bacterial strains and it was found that compounds 7a-d exhibited antibacterial activities very close to standard Ciprofloxacin. The synthesized derivatives demonstrated moderate to weak anti-enzymatic potential against α-Glucosidase and Butyrylcholinesterase (BChE) where, compounds 7c and 5c exhibited comparatively better inhibition against these enzymes respectively. Compounds 7a, 7d and 7e showed excellent anti-enzymatic potentials against Lipoxygenase (LOX) and their IC50 values were much lower than the reference standard Baicalein. Enzyme inhibitory activities were also supported by computational docking results. Compounds 5c, 7a, 7b and 7c also showed low values of % hemolytic activity as well, showing that these molecules were not toxic, indicating that these molecules can be utilized as potential therapeutic agents against inflammatory ailments.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links