Displaying all 3 publications

Abstract:
Sort:
  1. Bassiri Nia A, Xin L, Yahya MY, Ayob A, Farokhi Nejad A, Rahimian Koloor SS, et al.
    Polymers (Basel), 2020 Sep 19;12(9).
    PMID: 32961655 DOI: 10.3390/polym12092139
    The present study investigates the effects of close-range blast loading of fibre metal laminates (FMLs) fabricated from woven glass polypropylene and aluminium alloy 2024-T3. The polypropylene layers and anodized aluminium are stacked in 3/2 layering configuration to investigate the impact energy absorbed through deformation and damage. In order to study the blast responses of FMLs, a 4-cable instrumented pendulum blast set-up is used. Effects of blast impulse and stand-off distance were examined. Investigation of the cross-section of FMLs are presented and damages such as fibre fracture, debonding, and global deformation are examined. Increasing stand-off distance from 4 to 14 mm resulted in a change of damage mode from highly localized perforation to global deformation.
  2. Farokhi Nejad A, Rahimian Koloor SS, Syed Hamzah SMSA, Yahya MY
    Polymers (Basel), 2021 Oct 21;13(21).
    PMID: 34771183 DOI: 10.3390/polym13213627
    As a light structure, composite sandwich panels are distinguished by their significant bending stiffness that is rapidly used in the manufacture of aircraft bodies. This study focuses on the mechanical behaviour of through-thickness polymer, pin-reinforced foam core sandwich panels subjected to indentation and low impact loading. Experimental and computational approaches are used to study the global and internal behaviour of the sandwich panel. The samples for experimental testing were made from glass/polyester laminates as the face sheets and polyurethane foam as the foam core. To further reinforce the samples against bending, different sizes of polymeric pins were implemented on the sandwich panels. The sandwich panel was fabricated using the vacuum infusion process. Using the experimental data, a finite element model of the sample was generated in LS-DYNA software, and the effect of pin size and loading rate were examined. Results of the simulation were validated through a proper prediction compared to the test data. The results of the study show that using polymeric pins, the flexural strength of the panel significantly increased under impact loading. In addition, the impact resistance of the pin-reinforced foam core panel increased up to 20%. Moreover, the size of pins has a significant influence on the flexural behaviour while the sample was under a moderate strain rate. To design an optimum pin-reinforced sandwich panel a "design of experiment model" was generated to predict energy absorption and the maximum peak load of proposed sandwich panels. The best design of the panel is recommended with 1.8 mm face sheet thickness and 5 mm pins diameter.
  3. Farokhi Nejad A, Bin Salim MY, Rahimian Koloor SS, Petrik S, Yahya MY, Abu Hassan S, et al.
    Polymers (Basel), 2021 Oct 02;13(19).
    PMID: 34641214 DOI: 10.3390/polym13193400
    As a high-demand material, polymer matrix composites are being used in many advanced industrial applications. Due to ecological issues in the past decade, some attention has been paid to the use of natural fibers. However, using only natural fibers is not desirable for advanced applications. Therefore, hybridization of natural and synthetic fibers appears to be a good solution for the next generation of polymeric composite structures. Composite structures are normally made for various harsh operational conditions, and studies on loading rate and strain-dependency are essential in the design stage of the structures. This review aimed to highlight the different materials' content of hybrid composites in the literature, while addressing the different methods of material characterization for various ranges of strain rates. In addition, this work covers the testing methods, possible failure, and damage mechanisms of hybrid and synthetic FRP composites. Some studies about different numerical models and analytical methods that are applicable for composite structures under different strain rates are described.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links