Displaying all 5 publications

Abstract:
Sort:
  1. Tan SC, Lim PY, Fang J, Mokhtar MFM, Hanif EAM, Jamal R
    Sci Rep, 2020 Feb 26;10(1):3508.
    PMID: 32103099 DOI: 10.1038/s41598-020-60442-3
    Numerous studies have investigated the association of MIR499A rs3746444 polymorphism with breast cancer susceptibility, but the results have been inconsistent. In this work, we performed a meta-analysis to obtain a more reliable estimate of the association between the polymorphism and susceptibility to breast cancer. A comprehensive literature search was conducted on PubMed, Scopus, Web of Science (WoS), China National Knowledge Infrastructure (CNKI), VIP and Wanfang databases up to January 2020. A total of 14 studies involving 6,797 cases and 8,534 controls were included for analysis under five genetic models: homozygous (GG vs. AA), heterozygous (AG vs. AA), dominant (AG + GG vs. AA), recessive (GG vs. AA + AG) and allele (G vs. A). A statistically significant association was observed between the polymorphism and an increased breast cancer susceptibility under all genetic models (homozygous, OR = 1.33, 95% CI = 1.03-1.71, P = 0.03; heterozygous, OR = 1.08, 95% CI = 1.00-1.16, P = 0.04; dominant, OR = 1.15, 95% CI = 1.02-1.30; P = 0.03; recessive, OR = 1.35, 95% CI = 1.06-1.72, P = 0.01; allele, OR = 1.12, 95% CI = 1.00-1.26, P = 0.04). Subgroup analysis based on ethnicity suggested that significant association was present only among Asians, but not Caucasians. In conclusion, MIR499A rs3746444 polymorphism was significantly associated with breast cancer susceptibility among Asians, suggesting its potential use as a genetic risk marker in this population.
  2. Fang J, Liu C, Law CL, Mujumdar AS, Xiao HW, Zhang C
    Crit Rev Food Sci Nutr, 2023;63(27):8720-8736.
    PMID: 35389273 DOI: 10.1080/10408398.2022.2059440
    Heat processing is one of the most efficient strategies used in food industry to improve quality and prolong shelf life. However, conventional processing methods such as microwave heating, burning charcoal treatment, boiling, and frying are energy-inefficient and often lead to inferior product quality. Superheated steam (SHS) is an innovative technology that offers many potential benefits to industry and is increasingly used in food industry. Compared to conventional processing methods, SHS holds higher heat transfer coefficients, which can reduce microorganisms on surface of foodstuffs efficiently. Additionally, SHS generates a low oxygen environment, which prevents lipid oxidation and harmful compounds generation. Furthermore, SHS can facilitate development of desired product quality, such as protein denaturation with functional characteristics, proper starch gelatinization, and can also reduce nutrient loss, and improve the physicochemical properties of foodstuffs. The current work provides a comprehensive review of the impact of SHS on the nutritional, physicochemical, and safety properties of various foodstuffs including meat, fruits, and vegetables, cereals, etc. Additionally, it also provides food manufacturers and researchers with basic knowledge and practical techniques for SHS processing of foodstuffs, which may improve the current scope of SHS and transfer current food systems to a healthy and sustainable one.
  3. Wang S, Loreau M, Arnoldi JF, Fang J, Rahman KA, Tao S, et al.
    Nat Commun, 2017 May 19;8:15211.
    PMID: 28524860 DOI: 10.1038/ncomms15211
    The spatial scaling of stability is key to understanding ecological sustainability across scales and the sensitivity of ecosystems to habitat destruction. Here we propose the invariability-area relationship (IAR) as a novel approach to investigate the spatial scaling of stability. The shape and slope of IAR are largely determined by patterns of spatial synchrony across scales. When synchrony decays exponentially with distance, IARs exhibit three phases, characterized by steeper increases in invariability at both small and large scales. Such triphasic IARs are observed for primary productivity from plot to continental scales. When synchrony decays as a power law with distance, IARs are quasilinear on a log-log scale. Such quasilinear IARs are observed for North American bird biomass at both species and community levels. The IAR provides a quantitative tool to predict the effects of habitat loss on population and ecosystem stability and to detect regime shifts in spatial ecological systems, which are goals of relevance to conservation and policy.
  4. Liu Y, Yu Q, Shu YL, Zhao JH, Fang JY, Wu HL
    J Helminthol, 2019 Jul 12;94:e59.
    PMID: 31296272 DOI: 10.1017/S0022149X19000518
    We identified and characterized a new cosmocercid nematode species, Cosmocercoides wuyiensis n. sp., through microscopic examination and sequencing of the partial small ribosomal RNA gene (18S rDNA), internal transcribed spacer (ITS) and mitochondrial cytochrome c oxidase subunit 1 (COI) genes. The new species was isolated from the intestine of the Asiatic frog Amolops wuyiensis Liu and Hu, 1975 captured from four localities of the Anhui province in south-east China. Among the 25 recorded species of the Cosmocercoides genus, the morphology of C. wuyiensis n. sp. is closest to that of C. kiliwai and C. malayensis, which were isolated from various Mexican frog and Malaysian lizard species, respectively. However, C. wuyiensis n. sp. displayed several distinguishing features, such as small size of the male body, two spicules of unequal lengths in the male, small gubernaculum, pre-, ad- and post-cloacal caudal rosette papillae in the ratio of 18-24:2:6 and simple papillae in the ratio of 14:multiple:4, circle and number of punctation in each rosette at 1:11-16, sharply conical tail-end and the presence of lateral alae and somatic papillae in both sexes. BLAST and the phylogenetic analyses of the 18S rDNA and ITS sequences indicated that C. wuyiensis n. sp. belonged to the genus Cosmocercoides, while that of the COI gene sequence of C. wuyiensis n. sp. showed 16.36% nucleotide divergence with C. pulcher and 47.99% nucleotide divergence with C. qingtianensis. The morphological and molecular characterization of C. wuyiensis n. sp. provides new taxonomic data for this genus.
  5. Xie Z, Li Y, Xiong K, Tu Z, Waiho K, Yang C, et al.
    Environ Pollut, 2023 Aug 15;331(Pt 2):121921.
    PMID: 37263564 DOI: 10.1016/j.envpol.2023.121921
    Anthropologic activities caused frequent eutrophication in coastal and estuarine waters, resulting in diel-cycling hypoxia. Given global climate change, extreme weather events often occur, thus salinity fluctuation frequently breaks out in these waters. This study aimed to evaluate the combined effects of salinity and hypoxia on intestinal microbiota and digestive enzymes of Crassostrea hongkongensis. Specifically, we sequenced 16 S rRNA of intestinal microbiota and measured the digestive enzymes trypsin (TRS), lipase (LPS) and amylase (AMY) in oysters exposed for 28 days to three salinities (10, 25 and 35) and two dissolved oxygen conditions, normoxia (6 mg/L) and hypoxia (6 mg/L for 12 h, 2 mg/L for 12 h). Oysters in normoxia and salinity of 25 were treated as control. After 28-day exposure, for microbial components, Fusobacteriota, Firmicutes, Bacteroidota, Proteobacteria and Actinobacteriota comprised the majority for all experimental groups. Compared with the control group, the diversity and structure of intestinal microbiota tended to change in all treated groups. The species richness in C. hongkongensis intestine also changed. It was the most significant that high salinity increased Proteobacteria proportion while low salinity and hypoxia increased Fusobacteriota but decreased Proteobacteria, respectively. Additionally, Actinobacteriota was sensitive and changed under environmental stressor (P 
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links