Displaying all 2 publications

Abstract:
Sort:
  1. Lu B, Zhang C, Deng DR, Weng JC, Song JX, Fan XH, et al.
    Molecules, 2023 Oct 28;28(21).
    PMID: 37959733 DOI: 10.3390/molecules28217314
    Sodium-ion batteries (SIBs) are promising alternatives to replace lithium-ion batteries as future energy storage batteries because of their abundant sodium resources, low cost, and high charging efficiency. In order to match the high energy capacity and density, designing an atomically doped carbonous material as the anode is presently one of the important strategies to commercialize SIBs. In this work, we report the preparation of high-performance dual-atom-doped carbon (C) materials using low-cost corn starch and thiourea (CH4N2S) as the precursors. The electronegativity and radii of the doped atoms and C are different, which can vary the embedding properties of sodium ions (Na+) into/on C. As sulfur (S) can effectively expand the layer spacing, it provides more channels for embedding and de-embedding Na+. The synergistic effect of N and S co-doping can remarkably boost the performance of SIBs. The capacity is preserved at 400 mAh g -1 after 200 cycles at 500 mA g-1; more notably, the initial Coulombic efficiency is 81%. Even at a high rate of high current of 10 A g-1, the cell capacity can still reach 170 mAh g-1. More importantly, after 3000 cycles at 1 A g-1, the capacity decay is less than 0.003% per cycle, which demonstrates its excellent electrochemical performance. These results indicate that high-performance carbon materials can be prepared using low-cost corn starch and thiourea.
  2. Smith GJ, Fan XH, Wang J, Li KS, Qin K, Zhang JX, et al.
    Proc Natl Acad Sci U S A, 2006 Nov 07;103(45):16936-41.
    PMID: 17075062
    The development of highly pathogenic avian H5N1 influenza viruses in poultry in Eurasia accompanied with the increase in human infection in 2006 suggests that the virus has not been effectively contained and that the pandemic threat persists. Updated virological and epidemiological findings from our market surveillance in southern China demonstrate that H5N1 influenza viruses continued to be panzootic in different types of poultry. Genetic and antigenic analyses revealed the emergence and predominance of a previously uncharacterized H5N1 virus sublineage (Fujian-like) in poultry since late 2005. Viruses from this sublineage gradually replaced those multiple regional distinct sublineages and caused recent human infection in China. These viruses have already transmitted to Hong Kong, Laos, Malaysia, and Thailand, resulting in a new transmission and outbreak wave in Southeast Asia. Serological studies suggest that H5N1 seroconversion in market poultry is low and that vaccination may have facilitated the selection of the Fujian-like sublineage. The predominance of this virus over a large geographical region within a short period directly challenges current disease control measures.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links