Displaying all 2 publications

Abstract:
Sort:
  1. Alavi J, Ewees AA, Ansari S, Shahid S, Yaseen ZM
    Environ Sci Pollut Res Int, 2022 Mar;29(14):20496-20516.
    PMID: 34741267 DOI: 10.1007/s11356-021-17190-2
    Accurate prediction of inlet chemical oxygen demand (COD) is vital for better planning and management of wastewater treatment plants. The COD values at the inlet follow a complex nonstationary pattern, making its prediction challenging. This study compared the performance of several novel machine learning models developed through hybridizing kernel-based extreme learning machines (KELMs) with intelligent optimization algorithms for the reliable prediction of real-time COD values. The combined time-series learning method and consumer behaviours, estimated from water-use data (hour/day), were used as the supplementary inputs of the hybrid KELM models. Comparison of model performances for different input combinations revealed the best performance using up to 2-day lag values of COD with the other wastewater properties. The results also showed the best performance of the KELM-salp swarm algorithm (SSA) model among all the hybrid models with a minimum root mean square error of 0.058 and mean absolute error of 0.044.
  2. Al-Qaness MAA, Ewees AA, Abualigah L, AlRassas AM, Thanh HV, Abd Elaziz M
    Entropy (Basel), 2022 Nov 17;24(11).
    PMID: 36421530 DOI: 10.3390/e24111674
    The forecasting and prediction of crude oil are necessary in enabling governments to compile their economic plans. Artificial neural networks (ANN) have been widely used in different forecasting and prediction applications, including in the oil industry. The dendritic neural regression (DNR) model is an ANNs that has showed promising performance in time-series prediction. The DNR has the capability to deal with the nonlinear characteristics of historical data for time-series forecasting applications. However, it faces certain limitations in training and configuring its parameters. To this end, we utilized the power of metaheuristic optimization algorithms to boost the training process and optimize its parameters. A comprehensive evaluation is presented in this study with six MH optimization algorithms used for this purpose: whale optimization algorithm (WOA), particle swarm optimization algorithm (PSO), genetic algorithm (GA), sine-cosine algorithm (SCA), differential evolution (DE), and harmony search algorithm (HS). We used oil-production datasets for historical records of crude oil production from seven real-world oilfields (from Tahe oilfields, in China), provided by a local partner. Extensive evaluation experiments were carried out using several performance measures to study the validity of the DNR with MH optimization methods in time-series applications. The findings of this study have confirmed the applicability of MH with DNR. The applications of MH methods improved the performance of the original DNR. We also concluded that the PSO and WOA achieved the best performance compared with other methods.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links