Displaying all 2 publications

Abstract:
Sort:
  1. Kho CM, Enche Ab Rahim SK, Ahmad ZA, Abdullah NS
    Mol Neurobiol, 2017 07;54(5):3506-3527.
    PMID: 27189617 DOI: 10.1007/s12035-016-9929-8
    Microdialysis is a sampling technique first introduced in the late 1950s. Although this technique was originally designed to study endogenous compounds in animal brain, it is later modified to be used in other organs. Additionally, microdialysis is not only able to collect unbound concentration of compounds from tissue sites; this technique can also be used to deliver exogenous compounds to a designated area. Due to its versatility, microdialysis technique is widely employed in a number of areas, including biomedical research. However, for most in vivo studies, the concentration of substance obtained directly from the microdialysis technique does not accurately describe the concentration of the substance on-site. In order to relate the results collected from microdialysis to the actual in vivo condition, a calibration method is required. To date, various microdialysis calibration methods have been reported, with each method being capable to provide valuable insights of the technique itself and its applications. This paper aims to provide a critical review on various calibration methods used in microdialysis applications, inclusive of a detailed description of the microdialysis technique itself to start with. It is expected that this article shall review in detail, the various calibration methods employed, present examples of work related to each calibration method including clinical efforts, plus the advantages and disadvantages of each of the methods.
  2. Zainal ZS, Hoo P, Ahmad AL, Abdullah AZ, Ng Q, Shuit S, et al.
    Heliyon, 2024 Feb 29;10(4):e26591.
    PMID: 38404855 DOI: 10.1016/j.heliyon.2024.e26591
    Driven by the urgent need for a solution to tackle the surge of rice husk (RH) and waste frying oil (WFO) waste accumulation at a global scale, this report highlights the use of calcium silicates (CS) extracted from acid-pre-treated rice husk ash (RHA) for free fatty acid (FFA) removal from WFO as conventional RHA shows limited FFA adsorption performance. A novel alkaline earth silicate extraction method from acid-pre-treated RHA was outlined. The structural and behavioural attributes of the synthesised CS were identified through BET, SEM-EDS, and XRD analyses and compared to those of RHA. Notable morphology and structural modification were determined, including reducing specific surface areas, mitigating from amorphous to crystalline structure with regular geometric forms, and detecting Si-O-Ca functional groups exclusive to CS adsorbents. A comparison study showed superior lauric acid (LA) adsorption performance by CS absorbents over acid-pre-treated RHA, with a significant increase from 0.0831 ± 0.0004 mmol LA/g to 2.5808 ± 0.0011 mmol LA/g after 60 min. Recognised as the best-performing CS adsorbent, CS-1.0 was used for further investigations on the effect of dosage, LA concentration, and temperature for efficient LA adsorption, with up to 100% LA removal and 5.6712 ± 0.0016 mmol LA/g adsorption capacity. The adsorption isotherm and kinetic studies showed LA adsorption onto CS-1.0 followed Freundlich isotherm with KF = 0.0598 mmol(1-1/n) L(1/n) g-1 & Qe,cal = 3.1696 mmol g-1 and intraparticle diffusion model with kid = 0.1250 mmol g-1 min0.5 & Ci = 0.9625 mmol g-1, indicating rapid initial adsorption and involvement of carboxylate end of LA and the calcium ions on the CS-1.0 in the rate-limiting step. The high equilibrium adsorption capacity and LA adsorption rate indicated that the proposed CS-1.0 adsorbent has excellent potential to recover FFA from WFO effectively.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links