Displaying all 3 publications

Abstract:
Sort:
  1. Harun MSR, Taylor M, Zhu XQ, Elsheikha HM
    Microorganisms, 2020 Jun 04;8(6).
    PMID: 32512820 DOI: 10.3390/microorganisms8060842
    Central to the progression of cerebral toxoplasmosis is the interaction of Toxoplasma gondii with the blood-brain barrier (BBB) endothelial cells. In the present work, we tested the hypothesis that inhibition of Wnt pathway signalling by the monovalent ionophore monensin reduces the growth of T. gondii infecting human brain microvascular endothelial cells (hBMECs) or microglial cells. The anti-parasitic effect of monensin (a Wnt signalling inhibitor) on the in vitro growth of T. gondii tachyzoites was investigated using two methods (Sulforhodamine B staining and microscopic parasite counting). The monensin inhibited T. gondii growth (50% inhibitory concentration [IC50] = 0.61 μM) with a selective index = 8.48 when tested against hBMECs (50% cytotoxic concentration [CC50] = 5.17 μM). However, IC50 of monensin was 4.13 μM with a SI = 13.82 when tested against microglia cells (CC50 = 57.08 μM), suggesting less sensitivity of microglia cells to monensin treatment. The effect of T. gondii on the integrity of the BBB was assessed by the transendothelial electrical resistance (TEER) assay using an in vitro human BBB model. The results showed that T. gondii infection significantly decreased hBMECs' TEER resistance, which was rescued when cells were treated with 0.1 µM monensin, probably due to the anti-parasitic activity of monensin. We also investigated the host-targeted effects of 0.1 µM monensin on global gene expression in hBMECs with or without T. gondii infection. Treatment of hBMECs with monensin did not significantly influence the expression of genes involved in the Wnt signalling pathway, suggesting that although inhibition of the Wnt signalling pathway did not play a significant role in T. gondii infection of hBMECs, monensin was still effective in limiting the growth of T. gondii. On the contrary, monensin treatment downregulated pathways related to steroids, cholesterol and protein biosynthesis and their transport between endoplasmic reticulum and Golgi apparatus, and deregulated pathways related to cell cycle and DNA synthesis and repair mechanisms. These results provide new insight into the host-modulatory effect of monensin during T. gondii infection, which merits further investigation.
  2. Harun MSR, Marsh V, Elsaied NA, Webb KF, Elsheikha HM
    Brain Res, 2020 11 01;1746:147002.
    PMID: 32592740 DOI: 10.1016/j.brainres.2020.147002
    Toxoplasma gondii can cause parasitic encephalitis, a life-threatening infection that predominately occurs in immunocompromised individuals. T. gondii has the ability to invade the brain, but the mechanisms by which this parasite crosses the blood-brain-barrier (BBB) remain incompletely understood. The present study reports the changes associated with infection and replication of T. gondii within human brain microvascular endothelial cells (BMECs) in vitro. Our results indicated that exposure to T. gondii had an adverse impact on the function and integrity of the BMECs - through induction of cell cycle arrest, disruption of the BMEC barrier integrity, reduction of cellular viability and vitality, depolarization of the mitochondrial membrane potential, increase of the DNA fragmentation, and alteration of the expression of immune response and tight junction genes. The calcium channel/P-glycoprotein transporter inhibitor verapamil was effective in inhibiting T. gondii crossing the BMECs in a dose-dependent manner. The present study showed that T. gondii can compromise several functions of BMECs and demonstrated the ability of verapamil to inhibit T. gondii crossing of the BMECs in vitro.
  3. Fakae LB, Harun MSR, Ting DSJ, Dua HS, Cave GWV, Zhu XQ, et al.
    Acta Trop, 2023 Jan;237:106729.
    PMID: 36280206 DOI: 10.1016/j.actatropica.2022.106729
    We examined the anti-acanthamoebic efficacy of green tea Camellia sinensis solvent extract (SE) or its chemical constituents against Acanthamoeba castellanii by using anti-trophozoite, anti-encystation, and anti-excystation assays. C. sinensis SE (625-5000 µg/mL) inhibited trophozoite replication within 24-72 h. C. sinensis SE exhibited a dose-dependent inhibition of encystation, with a marked cysticidal activity at 2500-5000 µg/mL. Two constituents of C. sinensis, namely epigallocatechin-3-gallate and caffeine, at 100 μM and 200 μM respectively, significantly inhibited both trophozoite replication and encystation. Cytotoxicity analysis showed that 156.25-2500 µg/mL of SE was not toxic to human corneal epithelial cells, while up to 625 µg/mL was not toxic to Madin-Darby canine kidney cells. This study shows the anti-acanthamoebic potential of C. sinensis SE against A. castellanii trophozoites and cysts. Pre-clinical studies are required to elucidate the in vivo efficacy and safety of C. sinensis SE.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links