Displaying all 4 publications

Abstract:
Sort:
  1. El Sayed I, Liu Q, Wee I, Hine P
    Cochrane Database Syst Rev, 2018 09 24;9:CD002150.
    PMID: 30246875 DOI: 10.1002/14651858.CD002150.pub2
    BACKGROUND: Scrub typhus, an important cause of acute fever in Asia, is caused by Orientia tsutsugamushi, an obligate intracellular bacterium. Antibiotics currently used to treat scrub typhus include tetracyclines, chloramphenicol, macrolides, and rifampicin.

    OBJECTIVES: To assess and compare the effects of different antibiotic regimens for treatment of scrub typhus.

    SEARCH METHODS: We searched the following databases up to 8 January 2018: the Cochrane Infectious Diseases Group specialized trials register; CENTRAL, in the Cochrane Library (2018, Issue 1); MEDLINE; Embase; LILACS; and the metaRegister of Controlled Trials (mRCT). We checked references and contacted study authors for additional data. We applied no language or date restrictions.

    SELECTION CRITERIA: Randomized controlled trials (RCTs) or quasi-RCTs comparing antibiotic regimens in people with the diagnosis of scrub typhus based on clinical symptoms and compatible laboratory tests (excluding the Weil-Felix test).

    DATA COLLECTION AND ANALYSIS: For this update, two review authors re-extracted all data and assessed the certainty of evidence. We meta-analysed data to calculate risk ratios (RRs) for dichotomous outcomes when appropriate, and elsewhere tabulated data to facilitate narrative analysis.

    MAIN RESULTS: We included six RCTs and one quasi-RCT with 548 participants; they took place in the Asia-Pacific region: Korea (three trials), Malaysia (one trial), and Thailand (three trials). Only one trial included children younger than 15 years (N = 57). We judged five trials to be at high risk of performance and detection bias owing to inadequate blinding. Trials were heterogenous in terms of dosing of interventions and outcome measures. Across trials, treatment failure rates were low.Two trials compared doxycycline to tetracycline. For treatment failure, the difference between doxycycline and tetracycline is uncertain (very low-certainty evidence). Doxycycline compared to tetracycline may make little or no difference in resolution of fever within 48 hours (risk ratio (RR) 1.14, 95% confidence interval (CI) 0.90 to 1.44, 55 participants; one trial; low-certainty evidence) and in time to defervescence (116 participants; one trial; low-certainty evidence). We were unable to extract data for other outcomes.Three trials compared doxycycline versus macrolides. For most outcomes, including treatment failure, resolution of fever within 48 hours, time to defervescence, and serious adverse events, we are uncertain whether study results show a difference between doxycycline and macrolides (very low-certainty evidence). Macrolides compared to doxycycline may make little or no difference in the proportion of patients with resolution of fever within five days (RR 1.05, 95% CI 0.99 to 1.10; 185 participants; two trials; low-certainty evidence). Another trial compared azithromycin versus doxycycline or chloramphenicol in children, but we were not able to disaggregate date for the doxycycline/chloramphenicol group.One trial compared doxycycline versus rifampicin. For all outcomes, we are uncertain whether study results show a difference between doxycycline and rifampicin (very low-certainty evidence). Of note, this trial deviated from the protocol after three out of eight patients who had received doxycycline and rifampicin combination therapy experienced treatment failure.Across trials, mild gastrointestinal side effects appeared to be more common with doxycycline than with comparator drugs.

    AUTHORS' CONCLUSIONS: Tetracycline, doxycycline, azithromycin, and rifampicin are effective treatment options for scrub typhus and have resulted in few treatment failures. Chloramphenicol also remains a treatment option, but we could not include this among direct comparisons in this review.Most available evidence is of low or very low certainty. For specific outcomes, some low-certainty evidence suggests there may be little or no difference between tetracycline, doxycycline, and azithromycin as treatment options. Given very low-certainty evidence for rifampicin and the risk of inducing resistance in undiagnosed tuberculosis, clinicians should not regard this as a first-line treatment option. Clinicians could consider rifampicin as a second-line treatment option after exclusion of active tuberculosis.Further research should consist of additional adequately powered trials of doxycycline versus azithromycin or other macrolides, trials of other candidate antibiotics including rifampicin, and trials of treatments for severe scrub typhus. Researchers should standardize diagnostic techniques and reporting of clinical outcomes to allow robust comparisons.

  2. GBD 2019 Lip, Oral, and Pharyngeal Cancer Collaborators, Cunha ARD, Compton K, Xu R, Mishra R, Drangsholt MT, et al.
    JAMA Oncol, 2023 Oct 01;9(10):1401-1416.
    PMID: 37676656 DOI: 10.1001/jamaoncol.2023.2960
    IMPORTANCE: Lip, oral, and pharyngeal cancers are important contributors to cancer burden worldwide, and a comprehensive evaluation of their burden globally, regionally, and nationally is crucial for effective policy planning.

    OBJECTIVE: To analyze the total and risk-attributable burden of lip and oral cavity cancer (LOC) and other pharyngeal cancer (OPC) for 204 countries and territories and by Socio-demographic Index (SDI) using 2019 Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study estimates.

    EVIDENCE REVIEW: The incidence, mortality, and disability-adjusted life years (DALYs) due to LOC and OPC from 1990 to 2019 were estimated using GBD 2019 methods. The GBD 2019 comparative risk assessment framework was used to estimate the proportion of deaths and DALYs for LOC and OPC attributable to smoking, tobacco, and alcohol consumption in 2019.

    FINDINGS: In 2019, 370 000 (95% uncertainty interval [UI], 338 000-401 000) cases and 199 000 (95% UI, 181 000-217 000) deaths for LOC and 167 000 (95% UI, 153 000-180 000) cases and 114 000 (95% UI, 103 000-126 000) deaths for OPC were estimated to occur globally, contributing 5.5 million (95% UI, 5.0-6.0 million) and 3.2 million (95% UI, 2.9-3.6 million) DALYs, respectively. From 1990 to 2019, low-middle and low SDI regions consistently showed the highest age-standardized mortality rates due to LOC and OPC, while the high SDI strata exhibited age-standardized incidence rates decreasing for LOC and increasing for OPC. Globally in 2019, smoking had the greatest contribution to risk-attributable OPC deaths for both sexes (55.8% [95% UI, 49.2%-62.0%] of all OPC deaths in male individuals and 17.4% [95% UI, 13.8%-21.2%] of all OPC deaths in female individuals). Smoking and alcohol both contributed to substantial LOC deaths globally among male individuals (42.3% [95% UI, 35.2%-48.6%] and 40.2% [95% UI, 33.3%-46.8%] of all risk-attributable cancer deaths, respectively), while chewing tobacco contributed to the greatest attributable LOC deaths among female individuals (27.6% [95% UI, 21.5%-33.8%]), driven by high risk-attributable burden in South and Southeast Asia.

    CONCLUSIONS AND RELEVANCE: In this systematic analysis, disparities in LOC and OPC burden existed across the SDI spectrum, and a considerable percentage of burden was attributable to tobacco and alcohol use. These estimates can contribute to an understanding of the distribution and disparities in LOC and OPC burden globally and support cancer control planning efforts.

  3. Burstein R, Henry NJ, Collison ML, Marczak LB, Sligar A, Watson S, et al.
    Nature, 2019 Oct;574(7778):353-358.
    PMID: 31619795 DOI: 10.1038/s41586-019-1545-0
    Since 2000, many countries have achieved considerable success in improving child survival, but localized progress remains unclear. To inform efforts towards United Nations Sustainable Development Goal 3.2-to end preventable child deaths by 2030-we need consistently estimated data at the subnational level regarding child mortality rates and trends. Here we quantified, for the period 2000-2017, the subnational variation in mortality rates and number of deaths of neonates, infants and children under 5 years of age within 99 low- and middle-income countries using a geostatistical survival model. We estimated that 32% of children under 5 in these countries lived in districts that had attained rates of 25 or fewer child deaths per 1,000 live births by 2017, and that 58% of child deaths between 2000 and 2017 in these countries could have been averted in the absence of geographical inequality. This study enables the identification of high-mortality clusters, patterns of progress and geographical inequalities to inform appropriate investments and implementations that will help to improve the health of all populations.
  4. Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Abate D, Abbasi N, Abbastabar H, Abd-Allah F, et al.
    JAMA Oncol, 2019 Dec 01;5(12):1749-1768.
    PMID: 31560378 DOI: 10.1001/jamaoncol.2019.2996
    IMPORTANCE: Cancer and other noncommunicable diseases (NCDs) are now widely recognized as a threat to global development. The latest United Nations high-level meeting on NCDs reaffirmed this observation and also highlighted the slow progress in meeting the 2011 Political Declaration on the Prevention and Control of Noncommunicable Diseases and the third Sustainable Development Goal. Lack of situational analyses, priority setting, and budgeting have been identified as major obstacles in achieving these goals. All of these have in common that they require information on the local cancer epidemiology. The Global Burden of Disease (GBD) study is uniquely poised to provide these crucial data.

    OBJECTIVE: To describe cancer burden for 29 cancer groups in 195 countries from 1990 through 2017 to provide data needed for cancer control planning.

    EVIDENCE REVIEW: We used the GBD study estimation methods to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life-years (DALYs). Results are presented at the national level as well as by Socio-demographic Index (SDI), a composite indicator of income, educational attainment, and total fertility rate. We also analyzed the influence of the epidemiological vs the demographic transition on cancer incidence.

    FINDINGS: In 2017, there were 24.5 million incident cancer cases worldwide (16.8 million without nonmelanoma skin cancer [NMSC]) and 9.6 million cancer deaths. The majority of cancer DALYs came from years of life lost (97%), and only 3% came from years lived with disability. The odds of developing cancer were the lowest in the low SDI quintile (1 in 7) and the highest in the high SDI quintile (1 in 2) for both sexes. In 2017, the most common incident cancers in men were NMSC (4.3 million incident cases); tracheal, bronchus, and lung (TBL) cancer (1.5 million incident cases); and prostate cancer (1.3 million incident cases). The most common causes of cancer deaths and DALYs for men were TBL cancer (1.3 million deaths and 28.4 million DALYs), liver cancer (572 000 deaths and 15.2 million DALYs), and stomach cancer (542 000 deaths and 12.2 million DALYs). For women in 2017, the most common incident cancers were NMSC (3.3 million incident cases), breast cancer (1.9 million incident cases), and colorectal cancer (819 000 incident cases). The leading causes of cancer deaths and DALYs for women were breast cancer (601 000 deaths and 17.4 million DALYs), TBL cancer (596 000 deaths and 12.6 million DALYs), and colorectal cancer (414 000 deaths and 8.3 million DALYs).

    CONCLUSIONS AND RELEVANCE: The national epidemiological profiles of cancer burden in the GBD study show large heterogeneities, which are a reflection of different exposures to risk factors, economic settings, lifestyles, and access to care and screening. The GBD study can be used by policy makers and other stakeholders to develop and improve national and local cancer control in order to achieve the global targets and improve equity in cancer care.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links