Proteins from the plant chromoplast are essential for many physiological processes such as fatty acid biosynthesis. Different protein extraction methods were tested to find the most robust method to obtain oil palm chromoplast proteins for mass spectrometry analysis. Initially, two different solvents were employed to reduce the fruit lipids. Then, two plant cell wall digestive enzymes were used to acquire the protoplasts to increase the protein extraction effectiveness. A two-stage centrifugation-based fractionation approach enhanced the number of identified proteins, particularly the fatty acid biosynthetic enzymes. The effectiveness of each extraction method was assessed using protein yields and 2DE gel profiles. The ideal method was successfully used to establish the 2DE chromoplast proteome maps of low and high oleic acid mesocarps of oil palm. Further nanoLC-MS/MS analysis of the extracted chromoplast proteins led to the identification of 162 proteins, including some of the main enzymes involved in the fatty acid biosynthesis. The established procedures would provide a solid foundation for further functional studies, including fatty acid biosynthetic expression profiling and evaluation of regulatory function.
The details of plant lipid metabolism are relatively well known but the regulation of fatty acid production at the protein level is still not understood. Hence this study explores the importance of phosphorylation as a mechanism to control the activity of fatty acid biosynthetic enzymes using low and high oleic acid mesocarps of oil palm fruit (Elaeis guineensis variety of Tenera). Adaptation of neutral loss-triggered tandem mass spectrometry and selected reaction monitoring to detect the neutral loss of phosphoric acid successfully found several phosphoamino acid-containing peptides. These peptides corresponded to the peptides from acetyl-CoA carboxylase and 3-enoyl-acyl carrier protein reductase as identified by their precursor ion masses. These findings suggest that these enzymes were phosphorylated at 20th week after anthesis. Phosphorylation could have reduce their activities towards the end of fatty acid biosynthesis at ripening stage. Implication of phosphorylation in the regulation of fatty acid biosynthesis at protein level has never been reported.