Displaying all 4 publications

Abstract:
Sort:
  1. Mahmood I, Azfaralariff A, Mohamad A, Airianah OB, Law D, Dyari HRE, et al.
    PMID: 33737223 DOI: 10.1016/j.cbpc.2021.109033
    The ability of natural extracts to inhibit melanocyte activity is of great interest to researchers. This study evaluates and explores the ability of mutated Shiitake (A37) and wildtype Shiitake (WE) extract to inhibit this activity. Several properties such as total phenolic (TPC) and total flavonoid content (TFC), antioxidant activity, effect on cell and component profiling were conducted. While having no significant differences in total phenolic content, mutation resulted in A37 having a TFC content (1.04 ± 0.7 mg/100 ml) compared to WE (0.86 ± 0.9 mg/100 ml). Despite that, A37 extract has lower antioxidant activity (EC50, A37 = 549.6 ± 2.70 μg/ml) than WE (EC50 = 52.8 ± 1.19 μg/ml). Toxicity tests on zebrafish embryos show that both extracts, stop the embryogenesis process when the concentration used exceeds 900 μg/ml. Although both extracts showed pigmentation reduction in zebrafish embryos, A37 extract showed no effect on embryo heartbeat. Cell cycle studies revealed that WE significantly affect the cell cycle while A37 not. Further tests found that these extracts inhibit the phosphorylation of Glycogen synthase kinase 3 β (pGSK3β) in HS27 cell line, which may explain the activation of apoptosis in melanin-producing cells. It was found that from 19 known compounds, 14 compounds were present in both WE and A37 extracts. Interestingly, the presence of decitabine in A37 extract makes it very potential for use in the medical application such as treatment of melanoma, skin therapy and even cancer.
  2. Dyari HRE, Rawling T, Chen Y, Sudarmana W, Bourget K, Dwyer JM, et al.
    FASEB J, 2017 12;31(12):5246-5257.
    PMID: 28798154 DOI: 10.1096/fj.201700033R
    A saturated analog of the cytochrome P450-mediated ω-3-17,18-epoxide of ω-3-eicosapentaenoic acid (C20E) activated apoptosis in human triple-negative MDA-MB-231 breast cancer cells. This study evaluated the apoptotic mechanism of C20E. Increased cytosolic cytochrome c expression and altered expression of pro- and antiapoptotic B-cell lymphoma-2 proteins indicated activation of the mitochondrial pathway. Caspase-3 activation by C20E was prevented by pharmacological inhibition and silencing of the JNK and p38 MAP kinases (MAPK), upstream MAPK kinases MKK4 and MKK7, and the upstream MAPK kinase kinase apoptosis signal-regulating kinase 1 (ASK1). Silencing of the death receptor TNF receptor 1 (TNFR1), but not Fas, DR4, or DR5, and the adapters TRADD and TNF receptor-associated factor 2, but not Fas-associated death domain, prevented C20E-mediated apoptosis. B-cell lymphoma-2 homology 3-interacting domain death agonist (Bid) cleavage by JNK/p38 MAPK linked the extrinsic and mitochondrial pathways of apoptosis. In further studies, an antibody against the extracellular domain of TNFR1 prevented apoptosis by TNF-α but not C20E. These findings suggest that C20E acts intracellularly at TNFR1 to activate ASK1-MKK4/7-JNK/p38 MAPK signaling and to promote Bid-dependent mitochondrial disruption and apoptosis. Inin vivostudies, tumors isolated from C20E-treated nu/nu mice carrying MDA-MB-231 xenografts showed increased TUNEL staining and decreased Ki67 staining, reflecting increased apoptosis and decreased proliferation, respectively. ω-3-Epoxy fatty acids like C20E could be incorporated into treatments for triple-negative breast cancers.-Dyari, H. R. E., Rawling, T., Chen, Y., Sudarmana, W., Bourget, K., Dwyer, J. M., Allison, S. E., Murray, M. A novel synthetic analogue of ω-3 17,18-epoxyeicosatetraenoic acid activates TNF receptor-1/ASK1/JNK signaling to promote apoptosis in human breast cancer cells.
  3. Najm AAK, Azfaralariff A, Dyari HRE, Othman BA, Shahid M, Khalili N, et al.
    Sci Rep, 2021 11 30;11(1):23182.
    PMID: 34848729 DOI: 10.1038/s41598-021-02007-6
    Previous study has shown the antimicrobial activities of mucus protein extracted from Anabas testudineus. In this study, we are interested in characterizing the anticancer activity of the A. testudineus antimicrobial peptides (AMPs). The mucus was extracted, fractioned, and subjected to antibacterial activity testing to confirm the fish's AMPs production. The cytotoxic activity of each fraction was also identified. Fraction 2 (F2), which shows toxicity against MCF7 and MDA-MB-231 were sent for peptide sequencing to identify the bioactive peptide. The two peptides were then synthetically produced and subjected to cytotoxic assay to prove their efficacy against cancer cell lines. The IC50 for AtMP1 against MCF7 and MDA-MB-231 were 8.25 ± 0.14 μg/ml and 9.35 ± 0.25 μg/ml respectively, while for AtMP2 it is 5.89 ± 0.14 μg/ml and 6.97 ± 0.24 μg/ml respectively. AtMP1 and AtMP2 treatment for 48 h induced breast cancer cell cycle arrest and apoptosis by upregulating the p53, which lead to upregulate pro-apoptotic BAX gene and downregulate the anti-apoptotic BCL-2 gene, consequently, trigger the activation of the caspase-3. This interaction was supported by docking analysis (QuickDBD, HPEPDOCK, and ZDOCK) and immunoprecipitation. This study provided new prospects in the development of highly effective and selective cancer therapeutics based on antimicrobial peptides.
  4. Fazry S, Noordin MAM, Sanusi S, Noor MM, Aizat WM, Lazim AM, et al.
    Toxics, 2018 Oct 09;6(4).
    PMID: 30304811 DOI: 10.3390/toxics6040060
    Xanthone is an organic compound mostly found in mangosteen pericarp and widely known for its anti-proliferating effect on cancer cells. In this study, we evaluated the effects of xanthone crude extract (XCE) and α-mangostin (α-MG) on normoxic and hypoxic human hepatocellular carcinoma (HepG2) cells and their toxicity towards zebrafish embryos. XCE was isolated using a mixture of acetone and water (80:20) and verified via high performance liquid chromatography (HPLC). Both XCE and α-MG showed higher anti-proliferation effects on normoxic HepG2 cells compared to the control drug, 5-fluorouracil (IC50 = 50.23 ± 1.38, 8.39 ± 0.14, and 143.75 ± 15.31 μg/mL, respectively). In hypoxic conditions, HepG2 cells were two times less sensitive towards XCE compared to normoxic HepG2 cells (IC50 = 109.38 ± 1.80 μg/mL) and three times less sensitive when treated with >500 μg/mL 5-fluorouracil (5-FU). A similar trend was seen with the α-MG treatment on hypoxic HepG2 cells (IC50 = 10.11 ± 0.05 μg/mL) compared to normoxic HepG2 cells. However, at a concentration of 12.5 μg/mL, the α-MG treatment caused tail-bend deformities in surviving zebrafish embryos, while no malformation was observed when embryos were exposed to XCE and 5-FU treatments. Our study suggests that both XCE and α-MG are capable of inhibiting HepG2 cell proliferation during normoxic and hypoxic conditions, more effectively than 5-FU. However, XCE is the preferred option as no malformation was observed in surviving zebrafish embryos and it is more cost efficient than α-MG.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links