Mycobacteria a genus of Actinobacteria are widespread in nature ranging from soil-dwelling saprophytes to human and animal pathogens. The rate of growth has been a classifying factor for the Mycobacterium spp., dividing them into the rapid growers and the slow growers. Here we have performed a comparative genome study of mycobacterial species in order to get better understanding of their evolution, particularly to understand the distinction between the rapid and slow growers. Our study shows that the slow growers had generally gained and lost more genes compared to the rapid growers. The slow growers might haved eventually lost genes (LivFGMH operon, shaACDEFG genes and MspA porin) that could contribute to the slow growth rate of the slow growers. The genes gained and lost in mycobacteria had eventually helped these bacteria to adapt to different environments and have led to the evolution of the present day rapid and slow growers. Our results also show high number of Mycobacterium abscessus specific genes (811 genes) and some of them are associated with the known bacterial quorum sensing genes that might be important for Mycobacterium abscessus to adapt and survive in variety of unfavorable environments. Mycobacterium abscessus also does not contains genes involved in the bacterial defense system and together with the quorum sensing genes may have contributed to the high gene gain rate of Mycobacterium abscessus.
Mycobacterium cosmeticum is a nontuberculous Mycobacterium recovered from different water sources including household potable water and water collected at nail salon. Individual cases of this bacterium have been reported to be associated with gastrointestinal tract infections. Here we present the first whole-genome study and comparative analysis of two new clinically-derived Mycobacterium sp. UM_RHS (referred as UM_RHS after this) and Mycobacterium sp. UM_NYF (referred as UM_NYF after this) isolated from patients in Indonesia and Malaysia respectively to have a better understanding of the biological characteristic of these isolates. Both strains are likely Mycobacterium cosmeticum as supported by the evidence from molecular phylogenetic, comparative genomic and Average Nucleotide Identity (ANI) analyses. We found the presence of a considerably large number of putative virulence genes in the genomes of UM_RHS and UM_NYF. Interestingly, we also found a horizontally transferred genomic island carrying a putative dsz operon proposing that they may have potential to perform biodesulfization of dibenzothiophene (DBT) that may be effective in cost reduction and air pollution during fuel combustion. This comparative study may provide new insights into M. cosmeticum and serve as an important reference for future functional studies of this bacterial species.
Mycobacteria have been reported to cause a wide range of human diseases. We present the first whole-genome study of a Non-Tuberculous Mycobacterium, Mycobacterium sp. UM_CSW (referred to hereafter as UM_CSW), isolated from a patient diagnosed with bronchiectasis. Our data suggest that this clinical isolate is likely a novel mycobacterial species, supported by clear evidence from molecular phylogenetic, comparative genomic, ANI and AAI analyses. UM_CSW is closely related to the Mycobacterium avium complex. While it has characteristic features of an environmental bacterium, it also shows a high pathogenic potential with the presence of a wide variety of putative genes related to bacterial virulence and shares very similar pathogenomic profiles with the known pathogenic mycobacterial species. Thus, we conclude that this possible novel Mycobacterium species should be tightly monitored for its possible causative role in human infections.
Background: Paraburkholderia fungorum (P. fungorum) is a Gram-negative environmental species that has been commonly used as a beneficial microorganism in agriculture as an agent for biocontrol and bioremediation. Its use in agriculture is controversial as many people believe that it could harm human health; however, there is no clear evidence to support.
Methodology: The pangolin P. fungorum (pangolin Pf) genome has a genomic size of approximately 7.7 Mbps with N50 of 69,666 bps. Our study showed that pangolin Pf is a Paraburkholderia fungorum supported by evidence from the core genome SNP-based phylogenetic analysis and the ANI analysis. Functional analysis has shown that the presence of a considerably large number of genes related to stress response, virulence, disease, and defence. Interestingly, we identified different types of secretion systems in the genome of pangolin Pf, which are highly specialized and responsible for a bacterium's response to its environment and in physiological processes such as survival, adhesion, and adaptation. The pangolin Pf also shared some common virulence genes with the known pathogenic member of the Burkholderiales. These genes play important roles in adhesion, motility, and invasion.
Conclusion: This study may provide better insights into the functions, secretion systems and virulence of this pangolin-associated bacterial strain. The addition of this genome sequence is also important for future comparative analysis and functional work of P. fungorum.
Fusobacterium nucleatum is considered to be a key oral bacterium in recruiting periodontal pathogens into subgingival dental plaque. Currently F. nucleatum can be subdivided into five subspecies. Our previous genome analysis of F. nucleatum W1481 (referred to hereafter as W1481), isolated from an 8-mm periodontal pocket in a patient with chronic periodontitis, suggested the possibility of a new subspecies. To further investigate the biology and relationships of this possible subspecies with other known subspecies, we performed comparative analysis between W1481 and 35 genome sequences represented by the five known Fusobacterium subspecies. Our analyses suggest that W1481 is most likely a new F. nucleatum subspecies, supported by evidence from phylogenetic analyses and maximal unique match indices (MUMi). Interestingly, we found a horizontally transferred W1481-specific genomic island harboring the tripartite ATP-independent (TRAP)-like transporter genes, suggesting this bacterium might have a high-affinity transport system for the C4-dicarboxylates malate, succinate, and fumarate. Moreover, we found virulence genes in the W1481 genome that may provide a strong defense mechanism which might enable it to colonize and survive within the host by evading immune surveillance. This comparative study provides better understanding of F. nucleatum and the basis for future functional work on this important pathogen.
On record, there are 17 species in the Yersinia genus, of which three are known to be pathogenic to human. While the chromosomal and pYV (or pCD1) plasmid-borne virulence genes as well as pathogenesis of these three species are well studied, their genomic evolution is poorly understood. Our study aims to predict the key evolutionary events that led to the emergence of pathogenic Yersinia species by analyzing gene gain-and-loss, virulence genes, and "Clustered regularly-interspaced short palindromic repeats". Our results suggest that the most recent ancestor shared by the human pathogenic Yersinia was most probably an environmental species that had adapted to the human body. This might have led to ecological specialization that diverged Yersinia into ecotypes and distinct lineages based on differential gene gain-and-loss in different niches. Our data also suggest that Y. pseudotuberculosis group might be the donor of the ail virulence gene to Y. enterocolitica. Hence, we postulate that evolution of human pathogenic Yersinia might not be totally in parallel, but instead, there were lateral gene transfer events. Furthermore, the presence of virulence genes seems to be important for the positive selection of virulence plasmid. Our studies provide better insights into the evolutionary biology of these bacteria.
Mycobacterium spp. are renowned for being the causative agent of diseases like leprosy, Buruli ulcer and tuberculosis in human beings. With more and more mycobacterial genomes being sequenced, any knowledge generated from comparative genomic analysis would provide better insights into the biology, evolution, phylogeny and pathogenicity of this genus, thus helping in better management of diseases caused by Mycobacterium spp.With this motivation, we constructed MycoCAP, a new comparative analysis platform dedicated to the important genus Mycobacterium. This platform currently provides information of 2108 genome sequences of at least 55 Mycobacterium spp. A number of intuitive web-based tools have been integrated in MycoCAP particularly for comparative analysis including the PGC tool for comparison between two genomes, PathoProT for comparing the virulence genes among the Mycobacterium strains and the SuperClassification tool for the phylogenic classification of the Mycobacterium strains and a specialized classification system for strains of Mycobacterium abscessus. We hope the broad range of functions and easy-to-use tools provided in MycoCAP makes it an invaluable analysis platform to speed up the research discovery on mycobacteria for researchers. Database URL: http://mycobacterium.um.edu.my.
Nigella sativa L. is one of the most extensively used traditional medicinal plants. This widely studied plant is known to display diverse pharmacological actions, including antimicrobial activities. Current literature has documented its multi-target mode of antimicrobial actions. N. sativa or its bioactive compounds, such as thymoquinone, can induce oxidative stress, cell apoptosis (by producing reactive oxygen species), increase membrane permeability, inhibit efflux pumps, and impose strong biocidal actions. Despite its well-documented antimicrobial efficacy in the experimental model, to the best of our knowledge its antimicrobial mechanisms highlighting the multi-targeting properties have yet to be well discussed. Is N. sativa or thymoquinone a valuable lead compound for therapeutic development for infectious diseases? Are N. sativa's bioactive compounds potential antimicrobial agents or able to overcome antimicrobial resistance? This review aims to discuss the antimicrobial pharmacology of N. sativa-based treatments. Additionally, it provides a holistic overview of the ethnobotany, ethnopharmacology, and phytochemistry of N. sativa.
Fusobacterium are anaerobic gram-negative bacteria that have been associated with a wide spectrum of human infections and diseases. As the biology of Fusobacterium is still not well understood, comparative genomic analysis on members of this species will provide further insights on their taxonomy, phylogeny, pathogenicity and other information that may contribute to better management of infections and diseases. To facilitate the ongoing genomic research on Fusobacterium, a specialized database with easy-to-use analysis tools is necessary. Here we present FusoBase, an online database providing access to genome-wide annotated sequences of Fusobacterium strains as well as bioinformatics tools, to support the expanding scientific community. Using our custom-developed Pairwise Genome Comparison tool, we demonstrate how differences between two user-defined genomes and how insertion of putative prophages can be identified. In addition, Pathogenomics Profiling Tool is capable of clustering predicted genes across Fusobacterium strains and visualizing the results in the form of a heat map with dendrogram.
Listeria consists of both pathogenic and non-pathogenic species. Reports of similarities between the genomic content between some pathogenic and non-pathogenic species necessitates the investigation of these species at the genomic level to understand the evolution of virulence-associated genes. With Listeria genome data growing exponentially, comparative genomic analysis may give better insights into evolution, genetics and phylogeny of Listeria spp., leading to better management of the diseases caused by them.
Background. The gram-negative Neisseria is associated with two of the most potent human epidemic diseases: meningococcal meningitis and gonorrhoea. In both cases, disease is caused by bacteria colonizing human mucosal membrane surfaces. Overall, the genus shows great diversity and genetic variation mainly due to its ability to acquire and incorporate genetic material from a diverse range of sources through horizontal gene transfer. Although a number of databases exist for the Neisseria genomes, they are mostly focused on the pathogenic species. In this present study we present the freely available NeisseriaBase, a database dedicated to the genus Neisseria encompassing the complete and draft genomes of 15 pathogenic and commensal Neisseria species. Methods. The genomic data were retrieved from National Center for Biotechnology Information (NCBI) and annotated using the RAST server which were then stored into the MySQL database. The protein-coding genes were further analyzed to obtain information such as calculation of GC content (%), predicted hydrophobicity and molecular weight (Da) using in-house Perl scripts. The web application was developed following the secure four-tier web application architecture: (1) client workstation, (2) web server, (3) application server, and (4) database server. The web interface was constructed using PHP, JavaScript, jQuery, AJAX and CSS, utilizing the model-view-controller (MVC) framework. The in-house developed bioinformatics tools implemented in NeisseraBase were developed using Python, Perl, BioPerl and R languages. Results. Currently, NeisseriaBase houses 603,500 Coding Sequences (CDSs), 16,071 RNAs and 13,119 tRNA genes from 227 Neisseria genomes. The database is equipped with interactive web interfaces. Incorporation of the JBrowse genome browser in the database enables fast and smooth browsing of Neisseria genomes. NeisseriaBase includes the standard BLAST program to facilitate homology searching, and for Virulence Factor Database (VFDB) specific homology searches, the VFDB BLAST is also incorporated into the database. In addition, NeisseriaBase is equipped with in-house designed tools such as the Pairwise Genome Comparison tool (PGC) for comparative genomic analysis and the Pathogenomics Profiling Tool (PathoProT) for the comparative pathogenomics analysis of Neisseria strains. Discussion. This user-friendly database not only provides access to a host of genomic resources on Neisseria but also enables high-quality comparative genome analysis, which is crucial for the expanding scientific community interested in Neisseria research. This database is freely available at http://neisseria.um.edu.my.
Yersinia is a Gram-negative bacteria that includes serious pathogens such as the Yersinia pestis, which causes plague, Yersinia pseudotuberculosis, Yersinia enterocolitica. The remaining species are generally considered non-pathogenic to humans, although there is evidence that at least some of these species can cause occasional infections using distinct mechanisms from the more pathogenic species. With the advances in sequencing technologies, many genomes of Yersinia have been sequenced. However, there is currently no specialized platform to hold the rapidly-growing Yersinia genomic data and to provide analysis tools particularly for comparative analyses, which are required to provide improved insights into their biology, evolution and pathogenicity.
Novel species of fungi described in the present study include the following from Malaysia: Castanediella eucalypti from Eucalyptus pellita, Codinaea acacia from Acacia mangium, Emarcea eucalyptigena from Eucalyptus brassiana, Myrtapenidiella eucalyptorum from Eucalyptus pellita, Pilidiella eucalyptigena from Eucalyptus brassiana and Strelitziana malaysiana from Acacia mangium. Furthermore, Stachybotrys sansevieriicola is described from Sansevieria ehrenbergii (Tanzania), Phacidium grevilleae from Grevillea robusta (Uganda), Graphium jumulu from Adansonia gregorii and Ophiostoma eucalyptigena from Eucalyptus marginata (Australia), Pleurophoma ossicola from bone and Plectosphaerella populi from Populus nigra (Germany), Colletotrichum neosansevieriae from Sansevieria trifasciata, Elsinoë othonnae from Othonna quinquedentata and Zeloasperisporium cliviae (Zeloasperisporiaceae fam. nov.) from Clivia sp. (South Africa), Neodevriesia pakbiae, Phaeophleospora hymenocallidis and Phaeophleospora hymenocallidicola on leaves of a fern (Thailand), Melanconium elaeidicola from Elaeis guineensis (Indonesia), Hormonema viticola from Vitis vinifera (Canary Islands), Chlorophyllum pseudoglobossum from a grassland (India), Triadelphia disseminata from an immunocompromised patient (Saudi Arabia), Colletotrichum abscissum from Citrus (Brazil), Polyschema sclerotigenum and Phialemonium limoniforme from human patients (USA), Cadophora vitícola from Vitis vinifera (Spain), Entoloma flavovelutinum and Bolbitius aurantiorugosus from soil (Vietnam), Rhizopogon granuloflavus from soil (Cape Verde Islands), Tulasnella eremophila from Euphorbia officinarum subsp. echinus (Morocco), Verrucostoma martinicensis from Danaea elliptica (French West Indies), Metschnikowia colchici from Colchicum autumnale (Bulgaria), Thelebolus microcarpus from soil (Argentina) and Ceratocystis adelpha from Theobroma cacao (Ecuador). Myrmecridium iridis (Myrmecridiales ord. nov., Myrmecridiaceae fam. nov.) is also described from Iris sp. (The Netherlands). Novel genera include (Ascomycetes): Budhanggurabania from Cynodon dactylon (Australia), Soloacrosporiella, Xenocamarosporium, Neostrelitziana and Castanediella from Acacia mangium and Sabahriopsis from Eucalyptus brassiana (Malaysia), Readerielliopsis from basidiomata of Fuscoporia wahlbergii (French Guyana), Neoplatysporoides from Aloe ferox (Tanzania), Wojnowiciella, Chrysofolia and Neoeriomycopsis from Eucalyptus (Colombia), Neophaeomoniella from Eucalyptus globulus (USA), Pseudophaeomoniella from Olea europaea (Italy), Paraphaeomoniella from Encephalartos altensteinii, Aequabiliella, Celerioriella and Minutiella from Prunus (South Africa). Tephrocybella (Basidiomycetes) represents a novel genus from wood (Italy). Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.
Novel species of fungi described in the present study include the following from Australia: Vermiculariopsiella eucalypti, Mulderomyces natalis (incl. Mulderomyces gen. nov.), Fusicladium paraamoenum, Neotrimmatostroma paraexcentricum, and Pseudophloeospora eucalyptorum on leaves of Eucalyptus spp., Anungitea grevilleae (on leaves of Grevillea sp.), Pyrenochaeta acaciae (on leaves of Acacia sp.), and Brunneocarpos banksiae (incl. Brunneocarpos gen. nov.) on cones of Banksia attenuata. Novel foliicolous taxa from South Africa include Neosulcatispora strelitziae (on Strelitzia nicolai), Colletotrichum ledebouriae (on Ledebouria floridunda), Cylindrosympodioides brabejum (incl. Cylindrosympodioides gen. nov.) on Brabejum stellatifolium, Sclerostagonospora ericae (on Erica sp.), Setophoma cyperi (on Cyperus sphaerocephala), and Phaeosphaeria breonadiae (on Breonadia microcephala). Novelties described from Robben Island (South Africa) include Wojnowiciella cissampeli and Diaporthe cissampeli (both on Cissampelos capensis), Phaeotheca salicorniae (on Salicornia meyeriana), Paracylindrocarpon aloicola (incl. Paracylindrocarpon gen. nov.) on Aloe sp., and Libertasomyces myopori (incl. Libertasomyces gen. nov.) on Myoporum serratum. Several novelties are recorded from La Réunion (France), namely Phaeosphaeriopsis agapanthi (on Agapanthus sp.), Roussoella solani (on Solanum mauritianum), Vermiculariopsiella acaciae (on Acacia heterophylla), Dothiorella acacicola (on Acacia mearnsii), Chalara clidemiae (on Clidemia hirta), Cytospora tibouchinae (on Tibouchina semidecandra), Diaporthe ocoteae (on Ocotea obtusata), Castanediella eucalypticola, Phaeophleospora eucalypticola and Fusicladium eucalypticola (on Eucalyptus robusta), Lareunionomyces syzygii (incl. Lareunionomyces gen. nov.) and Parawiesneriomyces syzygii (incl. Parawiesneriomyces gen. nov.) on leaves of Syzygium jambos. Novel taxa from the USA include Meristemomyces arctostaphylos (on Arctostaphylos patula), Ochroconis dracaenae (on Dracaena reflexa), Rasamsonia columbiensis (air of a hotel conference room), Paecilomyces tabacinus (on Nicotiana tabacum), Toxicocladosporium hominis (from human broncoalveolar lavage fluid), Nothophoma macrospora (from respiratory secretion of a patient with pneumonia), and Penidiellopsis radicularis (incl. Penidiellopsis gen. nov.) from a human nail. Novel taxa described from Malaysia include Prosopidicola albizziae (on Albizzia falcataria), Proxipyricularia asari (on Asarum sp.), Diaporthe passifloricola (on Passiflora foetida), Paramycoleptodiscus albizziae (incl. Paramycoleptodiscus gen. nov.) on Albizzia falcataria, and Malaysiasca phaii (incl. Malaysiasca gen. nov.) on Phaius reflexipetalus. Two species are newly described from human patients in the Czech Republic, namely Microascus longicollis (from toenails of patient with suspected onychomycosis), and Chrysosporium echinulatum (from sole skin of patient). Furthermore, Alternaria quercicola is described on leaves of Quercus brantii (Iran), Stemphylium beticola on leaves of Beta vulgaris (The Netherlands), Scleroderma capeverdeanum on soil (Cape Verde Islands), Scleroderma dunensis on soil, and Blastobotrys meliponae from bee honey (Brazil), Ganoderma mbrekobenum on angiosperms (Ghana), Geoglossum raitviirii and Entoloma kruticianum on soil (Russia), Priceomyces vitoshaensis on Pterostichus melas (Carabidae) (Bulgaria) is the only one for which the family is listed, Ganoderma ecuadoriense on decaying wood (Ecuador), Thyrostroma cornicola on Cornus officinalis (Korea), Cercophora vinosa on decorticated branch of Salix sp. (France), Coprinus pinetorum, Coprinus littoralis and Xerocomellus poederi on soil (Spain). Two new genera from Colombia include Helminthosporiella and Uwemyces on leaves of Elaeis oleifera. Two species are described from India, namely Russula intervenosa (ectomycorrhizal with Shorea robusta), and Crinipellis odorata (on bark of Mytragyna parviflora). Novelties from Thailand include Cyphellophora gamsii (on leaf litter), Pisolithus aureosericeus and Corynascus citrinus (on soil). Two species are newly described from Citrus in Italy, namely Dendryphiella paravinosa on Citrus sinensis, and Ramularia citricola on Citrus floridana. Morphological and culture characteristics along with ITS nrDNA barcodes are provided for all taxa.
Novel species of fungi described in this study include those from various countries as follows: Australia: Banksiophoma australiensis (incl. Banksiophoma gen. nov.) on Banksia coccinea, Davidiellomycesaustraliensis (incl. Davidiellomyces gen. nov.) on Cyperaceae, Didymocyrtis banksiae on Banksia sessilis var. cygnorum, Disculoides calophyllae on Corymbia calophylla, Harknessia banksiae on Banksia sessilis, Harknessia banksiae-repens on Banksia repens, Harknessia banksiigena on Banksia sessilis var. cygnorum, Harknessia communis on Podocarpus sp., Harknessia platyphyllae on Eucalyptus platyphylla, Myrtacremonium eucalypti (incl. Myrtacremonium gen. nov.) on Eucalyptus globulus, Myrtapenidiella balenae on Eucalyptus sp., Myrtapenidiella eucalyptigena on Eucalyptus sp., Myrtapenidiella pleurocarpae on Eucalyptuspleurocarpa, Paraconiothyrium hakeae on Hakea sp., Paraphaeosphaeria xanthorrhoeae on Xanthorrhoea sp., Parateratosphaeria stirlingiae on Stirlingia sp., Perthomyces podocarpi (incl. Perthomyces gen. nov.) on Podocarpus sp., Readeriella ellipsoidea on Eucalyptus sp., Rosellinia australiensis on Banksia grandis, Tiarosporella corymbiae on Corymbia calophylla, Verrucoconiothyriumeucalyptigenum on Eucalyptus sp., Zasmidium commune on Xanthorrhoea sp., and Zasmidium podocarpi on Podocarpus sp. Brazil: Cyathus aurantogriseocarpus on decaying wood, Perenniporia brasiliensis on decayed wood, Perenniporia paraguyanensis on decayed wood, and Pseudocercospora leandrae-fragilis on Leandrafragilis.Chile: Phialocephala cladophialophoroides on human toe nail. Costa Rica: Psathyrella striatoannulata from soil. Czech Republic: Myotisia cremea (incl. Myotisia gen. nov.) on bat droppings. Ecuador: Humidicutis dictiocephala from soil, Hygrocybe macrosiparia from soil, Hygrocybe sangayensis from soil, and Polycephalomyces onorei on stem of Etlingera sp. France: Westerdykella centenaria from soil. Hungary: Tuber magentipunctatum from soil. India: Ganoderma mizoramense on decaying wood, Hodophilus indicus from soil, Keratinophyton turgidum in soil, and Russula arunii on Pterigota alata.Italy: Rhodocybe matesina from soil. Malaysia: Apoharknessia eucalyptorum, Harknessia malayensis, Harknessia pellitae, and Peyronellaea eucalypti on Eucalyptus pellita, Lectera capsici on Capsicum annuum, and Wallrothiella gmelinae on Gmelina arborea.Morocco: Neocordana musigena on Musa sp. New Zealand: Candida rongomai-pounamu on agaric mushroom surface, Candida vespimorsuum on cup fungus surface, Cylindrocladiella vitis on Vitis vinifera, Foliocryphia eucalyptorum on Eucalyptus sp., Ramularia vacciniicola on Vaccinium sp., and Rhodotorula ngohengohe on bird feather surface. Poland: Tolypocladium fumosum on a caterpillar case of unidentified Lepidoptera.Russia: Pholiotina longistipitata among moss. Spain: Coprinopsis pseudomarcescibilis from soil, Eremiomyces innocentii from soil, Gyroporus pseudocyanescens in humus, Inocybe parvicystis in humus, and Penicillium parvofructum from soil. Unknown origin: Paraphoma rhaphiolepidis on Rhaphiolepsis indica.USA: Acidiella americana from wall of a cooling tower, Neodactylaria obpyriformis (incl. Neodactylaria gen. nov.) from human bronchoalveolar lavage, and Saksenaea loutrophoriformis from human eye. Vietnam: Phytophthora mekongensis from Citrus grandis, and Phytophthora prodigiosa from Citrus grandis. Morphological and culture characteristics along with DNA barcodes are provided.