Displaying all 8 publications

Abstract:
Sort:
  1. Zuleta D, Arellano G, Muller-Landau HC, McMahon SM, Aguilar S, Bunyavejchewin S, et al.
    New Phytol, 2022 Jan;233(2):705-721.
    PMID: 34716605 DOI: 10.1111/nph.17832
    The relative importance of tree mortality risk factors remains unknown, especially in diverse tropical forests where species may vary widely in their responses to particular conditions. We present a new framework for quantifying the importance of mortality risk factors and apply it to compare 19 risks on 31 203 trees (1977 species) in 14 one-year periods in six tropical forests. We defined a condition as a risk factor for a species if it was associated with at least a doubling of mortality rate in univariate analyses. For each risk, we estimated prevalence (frequency), lethality (difference in mortality between trees with and without the risk) and impact ('excess mortality' associated with the risk, relative to stand-level mortality). The most impactful risk factors were light limitation and crown/trunk loss; the most prevalent were light limitation and small size; the most lethal were leaf damage and wounds. Modes of death (standing, broken and uprooted) had limited links with previous conditions and mortality risk factors. We provide the first ranking of importance of tree-level mortality risk factors in tropical forests. Future research should focus on the links between these risks, their climatic drivers and the physiological processes to enable mechanistic predictions of future tree mortality.
  2. Zuleta D, Arellano G, McMahon SM, Aguilar S, Bunyavejchewin S, Castaño N, et al.
    Glob Chang Biol, 2023 Jun;29(12):3409-3420.
    PMID: 36938951 DOI: 10.1111/gcb.16687
    Accurate estimates of forest biomass stocks and fluxes are needed to quantify global carbon budgets and assess the response of forests to climate change. However, most forest inventories consider tree mortality as the only aboveground biomass (AGB) loss without accounting for losses via damage to living trees: branchfall, trunk breakage, and wood decay. Here, we use ~151,000 annual records of tree survival and structural completeness to compare AGB loss via damage to living trees to total AGB loss (mortality + damage) in seven tropical forests widely distributed across environmental conditions. We find that 42% (3.62 Mg ha-1  year-1 ; 95% confidence interval [CI] 2.36-5.25) of total AGB loss (8.72 Mg ha-1  year-1 ; CI 5.57-12.86) is due to damage to living trees. Total AGB loss was highly variable among forests, but these differences were mainly caused by site variability in damage-related AGB losses rather than by mortality-related AGB losses. We show that conventional forest inventories overestimate stand-level AGB stocks by 4% (1%-17% range across forests) because assume structurally complete trees, underestimate total AGB loss by 29% (6%-57% range across forests) due to overlooked damage-related AGB losses, and overestimate AGB loss via mortality by 22% (7%-80% range across forests) because of the assumption that trees are undamaged before dying. Our results indicate that forest carbon fluxes are higher than previously thought. Damage on living trees is an underappreciated component of the forest carbon cycle that is likely to become even more important as the frequency and severity of forest disturbances increase.
  3. Stephenson NL, Das AJ, Condit R, Russo SE, Baker PJ, Beckman NG, et al.
    Nature, 2014 Mar 6;507(7490):90-3.
    PMID: 24429523 DOI: 10.1038/nature12914
    Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle--particularly net primary productivity and carbon storage--increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree's total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to undertand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.
  4. McDowell N, Allen CD, Anderson-Teixeira K, Brando P, Brienen R, Chambers J, et al.
    New Phytol, 2018 08;219(3):851-869.
    PMID: 29451313 DOI: 10.1111/nph.15027
    Tree mortality rates appear to be increasing in moist tropical forests (MTFs) with significant carbon cycle consequences. Here, we review the state of knowledge regarding MTF tree mortality, create a conceptual framework with testable hypotheses regarding the drivers, mechanisms and interactions that may underlie increasing MTF mortality rates, and identify the next steps for improved understanding and reduced prediction. Increasing mortality rates are associated with rising temperature and vapor pressure deficit, liana abundance, drought, wind events, fire and, possibly, CO2 fertilization-induced increases in stand thinning or acceleration of trees reaching larger, more vulnerable heights. The majority of these mortality drivers may kill trees in part through carbon starvation and hydraulic failure. The relative importance of each driver is unknown. High species diversity may buffer MTFs against large-scale mortality events, but recent and expected trends in mortality drivers give reason for concern regarding increasing mortality within MTFs. Models of tropical tree mortality are advancing the representation of hydraulics, carbon and demography, but require more empirical knowledge regarding the most common drivers and their subsequent mechanisms. We outline critical datasets and model developments required to test hypotheses regarding the underlying causes of increasing MTF mortality rates, and improve prediction of future mortality under climate change.
  5. Needham JF, Johnson DJ, Anderson-Teixeira KJ, Bourg N, Bunyavejchewin S, Butt N, et al.
    Glob Chang Biol, 2022 Jan 25.
    PMID: 35080088 DOI: 10.1111/gcb.16100
    The growth and survival of individual trees determine the physical structure of a forest with important consequences for forest function. However, given the diversity of tree species and forest biomes, quantifying the multitude of demographic strategies within and across forests and the way that they translate into forest structure and function remains a significant challenge. Here, we quantify the demographic rates of 1,961 tree species from temperate and tropical forests and evaluate how demographic diversity (DD) and demographic composition (DC) differ across forests, and how these differences in demography relate to species richness, aboveground biomass, and carbon residence time. We find wide variation in DD and DC across forest plots, patterns that are not explained by species richness or climate variables alone. There is no evidence that DD has an effect on either aboveground biomass or carbon residence time. Rather, the DC of forests, specifically the relative abundance of large statured species, predicted both biomass and carbon residence time. Our results demonstrate the distinct demographic compositions of globally distributed forests, reflecting biogeography, recent history, and current plot conditions. Linking the demographic composition of forests to resilience or vulnerability to climate change, will improve the precision and accuracy of predictions of future forest composition, structure and function.
  6. Hülsmann L, Chisholm RA, Comita L, Visser MD, de Souza Leite M, Aguilar S, et al.
    Nature, 2024 Mar;627(8004):564-571.
    PMID: 38418889 DOI: 10.1038/s41586-024-07118-4
    Numerous studies have shown reduced performance in plants that are surrounded by neighbours of the same species1,2, a phenomenon known as conspecific negative density dependence (CNDD)3. A long-held ecological hypothesis posits that CNDD is more pronounced in tropical than in temperate forests4,5, which increases community stabilization, species coexistence and the diversity of local tree species6,7. Previous analyses supporting such a latitudinal gradient in CNDD8,9 have suffered from methodological limitations related to the use of static data10-12. Here we present a comprehensive assessment of latitudinal CNDD patterns using dynamic mortality data to estimate species-site-specific CNDD across 23 sites. Averaged across species, we found that stabilizing CNDD was present at all except one site, but that average stabilizing CNDD was not stronger toward the tropics. However, in tropical tree communities, rare and intermediate abundant species experienced stronger stabilizing CNDD than did common species. This pattern was absent in temperate forests, which suggests that CNDD influences species abundances more strongly in tropical forests than it does in temperate ones13. We also found that interspecific variation in CNDD, which might attenuate its stabilizing effect on species diversity14,15, was high but not significantly different across latitudes. Although the consequences of these patterns for latitudinal diversity gradients are difficult to evaluate, we speculate that a more effective regulation of population abundances could translate into greater stabilization of tropical tree communities and thus contribute to the high local diversity of tropical forests.
  7. Slik JW, Arroyo-Rodríguez V, Aiba S, Alvarez-Loayza P, Alves LF, Ashton P, et al.
    Proc Natl Acad Sci U S A, 2015 Jun 16;112(24):7472-7.
    PMID: 26034279 DOI: 10.1073/pnas.1423147112
    The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼ 40,000 and ∼ 53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼ 19,000-25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼ 4,500-6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa.
  8. Slik JWF, Franklin J, Arroyo-Rodríguez V, Field R, Aguilar S, Aguirre N, et al.
    Proc Natl Acad Sci U S A, 2018 02 20;115(8):1837-1842.
    PMID: 29432167 DOI: 10.1073/pnas.1714977115
    Knowledge about the biogeographic affinities of the world's tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world's tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: (i) Indo-Pacific, (ii) Subtropical, (iii) African, (iv) American, and (v) Dry forests. Our results do not support the traditional neo- versus paleotropical forest division but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern-hemisphere forests.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links