OBJECTIVE: The present study introduces an approach for assessing athlete physical fitness in training environments: the Internet of Things (IoT) and CPS-based Physical Fitness Evaluation Method (IoT-CPS-PFEM).
METHODS: The IoT-CPS-PFEM employs a range of IoT-connected sensors and devices to observe and assess the physical fitness of athletes. The proposed methodology gathers information on diverse fitness parameters, including heart rate, body temperature, and oxygen saturation. It employs machine learning algorithms to scrutinize and furnish feedback on the athlete's physical fitness status.
RESULTS: The simulation findings illustrate the efficacy of the proposed IoT-CPS-PFEM in identifying the physical fitness levels of athletes, with an average precision of 93%. The method under consideration aims to tackle the existing obstacles of conventional physical fitness assessment techniques, including imprecisions, time lags, and manual data-gathering requirements. The approach of IoT-CPS-PFEM provides the benefits of real-time monitoring, precision, and automation, thereby enhancing an athlete's physical fitness and overall performance to a considerable extent.
CONCLUSION: The research findings suggest that the implementation of IoT-CPS-PFEM can significantly impact the physical fitness of athletes and enhance the performance of the Indian sports industry in global competitions.
MATERIALS AND METHODS: The rats were divided into 4 groups: Healthy Control (n=8), Diabetes Control (n=8), Diabetes Training (n=8), and Healthy Training (n=8). The protocol consisted of 8 weeks of High-intensity interval (5 sessions per week), where the training started with 80% of the peak speed in the first week, and 10% was added to this speed every week. To measure the level of B-catenin, c-MYC, GSK3B, and Bcl-2 proteins using the western blot method, cardiac pathological changes were measured using hematoxylin and eosin staining, Masson's trichrome and PAS staining and apoptosis using the TUNEL method.
FINDINGS: Histological results showed that diabetes causes significant pathological hypertrophy, fibrosis, and severe apoptosis in heart tissue. HIIT training significantly reduced pathological hypertrophy and fibrosis in heart tissue, and the rate of cardiomyocyte apoptosis was greatly reduced. This research showed that diabetes disorder increases the levels of B-catenin and c-Myc proteins and causes a decrease in the expression of GSK3B and Bcl-2 proteins. After eight weeks of HIIT training, the levels of B-catenin and c-Myc proteins decreased significantly, and the levels of GSK3B and Bcl-2 proteins increased.
CONCLUSION: This study showed that HIIT could be a suitable strategy to reduce cardiomyopathy in type 2 diabetic rats. However, it is suggested that in future studies, researchers should perform different intensities and exercises to promote exercise goals in type 2 diabetic cardiomyopathy.
RESEARCH DESIGN AND METHODS: Forty sarcopenic women were divided into an experimental group (EX = 30) and a control group (C = 10). The EX-group was further divided into Maintenance Training 1 (MT1 = 10), Maintenance Training 2 (MT2 = 10), and Detraining (DT = 10). The participants underwent 8 weeks of resistance training, consisting of hypertrophy and strength cycles. Following this, the EX-group had a 4-week period with no exercise or a reduced training volume. Measurements were taken at three time points.
RESULTS: After 8 weeks, the EX-group showed significant improvements in Insulin Like Growth Factor-1 (IGF-1), Myostatin (MSTN), Follistatin (Fstn), Growth Hormone (GH) and Cortisol (Cort) compared to the control group. During the volume reduction period, there were no significant differences between MT1 and MT2 groups, but both groups saw increases in IGF-1, Fstn, GH, and decreases in MSTN and Cort compared to the DT group.
CONCLUSIONS: These findings suggest that performing at least one training session per week with the HIIRT protocol is crucial for maintaining hormonal adaptations in sarcopenic older women.
STUDY DESIGN: A parallel-group, single-blinded randomized controlled trial.
METHODS: Eighty adults with KOA were randomly allocated to experimental (n=40) and control (n=40) groups. All participants underwent their usual physiotherapy care weekly for eight weeks. The experimental group received a structured HBE+EDU program to their usual care, while the control group performed home stretching exercises to equate treatment time. The Knee Injury and Osteoarthritis Outcome Score (KOOS) for the disability level, visual analogue scale (VAS) for pain, and timed up-and-go test (TUG) for mobility were measured pre-post intervention.
RESULTS: After eight weeks, the experimental group demonstrated significant improvements in the KOOS (all subscales), pain VAS, and TUG scores compared to baseline (P<0.001); meanwhile, only KOOS (activities of daily living and sports subscales) was significant in the control group. Relative to the control, the experimental group presented higher improvements (P<0.001) by 22.2%, 44.1%, and 15.7% for KOOS, pain VAS, and TUG, respectively.
CONCLUSION: Integrating the HBE+EDU program into usual KOA rehabilitation could reduce pain and disability, while it improved functional mobility. The finding of this study suggests a combination of a structured HBE and EDU program to be considered as part of mainstream KOA management.