Displaying all 5 publications

Abstract:
Sort:
  1. Kong PS, Pérès Y, Wan Daud WMA, Cognet P, Aroua MK
    Front Chem, 2019;7:205.
    PMID: 31058128 DOI: 10.3389/fchem.2019.00205
    Catalytic esterification of glycerol with oleic acid (OA) was optimized over hydrophobic mesoporous zirconia-silica heterogeneous acid catalyst (ZrO2-SiO2-Me&Et-PhSO3H) and benchmarked with commercial catalysts (Aquivion and Amberlyst 15) in order to examine the effect of catalyst acidity on conversion, yield and product selectivity. The process optimisation results showed an 80% conversion with a 59.4% glycerol mono-oleate (GMO) and 34.6% glycerol dioleate (GDO) selectivities corresponding to a combined GMO and GDO selectivity of 94.8% at equimolar OA-to-glycerol ratio, 160°C reaction temperature, 5 wt% catalyst concentration with respect to the OA weight and 4 h reaction time. This work reveals that the hydrophobic and mild acidic ZrO2-SiO2-Me&Et-PhSO3H catalyst outperformed Amberlyst 15 and Aquivion with a yield of 82% and GMO selectivity of 60%. It is found that catalyst acidity is a key parameter for catalytic activity and conversion rate. Nevertheless, high acidity/acid strength reduced the product yield in the glycerol esterification of OA.
  2. Rahim SANM, Lee CS, Abnisa F, Aroua MK, Daud WAW, Cognet P, et al.
    Sci Total Environ, 2020 Feb 25;705:135137.
    PMID: 31846815 DOI: 10.1016/j.scitotenv.2019.135137
    Glycerol is a by-product produced from biodiesel, fatty acid, soap and bioethanol industries. Today, the value of glycerol is decreasing in the global market due to glycerol surplus, which primarily resulted from the speedy expansion of biodiesel producers around the world. Numerous studies have proposed ways of managing and treating glycerol, as well as converting it into value-added compounds. The electrochemical conversion method is preferred for this transformation due to its simplicity and hence, it is discussed in detail. Additionally, the factors that could affect the process mechanisms and products distribution in the electrochemical process, including electrodes materials, pH of electrolyte, applied potential, current density, temperature and additives are also thoroughly explained. Value-added compounds that can be produced from the electrochemical conversion of glycerol include glyceraldehyde, dihydroxyacetone, glycolic acid, glyceric acid, lactic acid, 1,2-propanediol, 1,3-propanediol, tartronic acid and mesoxalic acid. These compounds are found to have broad applications in cosmetics, pharmaceutical, food and polymer industries are also described. This review will be devoted to a comprehensive overview of the current scenario in the glycerol electrochemical conversion, the factors affecting the mechanism pathways, reaction rates, product selectivity and yield. Possible outcomes obtained from the process and their benefits to the industries are discussed. The utilization of solid acid catalysts as additives for future studies is also suggested.
  3. Lee CS, Aroua MK, Wan Daud WA, Cognet P, Pérès Y, Ajeel MA
    Front Chem, 2019;7:110.
    PMID: 30931294 DOI: 10.3389/fchem.2019.00110
    In recent years, the rapid swift increase in world biodiesel production has caused an oversupply of its by-product, glycerol. Therefore, extensive research is done worldwide to convert glycerol into numerous high added-value chemicals i.e., glyceric acid, 1,2-propanediol, acrolein, glycerol carbonate, dihydroxyacetone, etc. Hydroxyl acids, glycolic acid and lactic acid, which comprise of carboxyl and alcohol functional groups, are the focus of this study. They are chemicals that are commonly found in the cosmetic industry as an antioxidant or exfoliator and a chemical source of emulsifier in the food industry, respectively. The aim of this study is to selectively convert glycerol into these acids in a single compartment electrochemical cell. For the first time, electrochemical conversion was performed on the mixed carbon-black activated carbon composite (CBAC) with Amberlyst-15 as acid catalyst. To the best of our knowledge, conversion of glycerol to glycolic and lactic acids via electrochemical studies using this electrode has not been reported yet. Two operating parameters i.e., catalyst dosage (6.4-12.8% w/v) and reaction temperature [room temperature (300 K) to 353 K] were tested. At 353 K, the selectivity of glycolic acid can reach up to 72% (with a yield of 66%), using 9.6% w/v catalyst. Under the same temperature, lactic acid achieved its highest selectivity (20.7%) and yield (18.6%) at low catalyst dosage, 6.4% w/v.
  4. Nadhirah Md Rahim SA, Lee CS, Abnisa F, Ashri Wan Daud WM, Aroua MK, Cognet P, et al.
    Chemosphere, 2022 Feb 11.
    PMID: 35157890 DOI: 10.1016/j.chemosphere.2022.133949
    Redox mediators supply an effective way to promote electrons (and protons) transport between the electrode and substrate without being in direct physical contact with the electrode. Here, the carbon-based electrodes with Amberlyst-15 as the redox mediator were used in the electrocatalytic reduction to investigate their ability to indirectly convert glycerol into 1,2-propanediol. The process aims to study the influence of different activated carbon compositions (60%, 70%, 80%, and 90% of total weight) in the activated carbon composite (ACC) electrodes on the electrochemical properties, reaction mechanisms, and selectivity of the yielded products. Their electrochemical behavior and physicochemical properties were determined by cyclic voltammetry (CV) and chronoamperometry (CA), followed by FESEM-EDX for the selected ACC electrode. Electroactive surface area (EASA) plays a role in glycerol mass transport and electrons transfer. EASA of 60ACC, 70ACC, 80ACC, and 90ACC (geometrical surface area of 0.50 cm2) were 19.62, 24.50, 36.74 and 30.83 cm2, respectively. With the highest EASA, 80ACC enhanced the mass transport and electrons transfer process that eventually improved its electrocatalytic activity. It outperformed other ACC electrodes by generating Amberlyst-15 radicals (A-15•-) with high current density at low potential (-0.5 V vs. Ag/AgCl). A-15•- served as the electron-donor for the homogeneous redox reaction with glycerol in delivering highly reactive glycerol radical for further intermediates development and generated 1,2-propanediol at -2.5 V vs. Ag/AgCl (current density of -0.2018 A cm-2). High activated carbon content portrayed a dominant role in controlling EASA and favored consecutive acetol-1,2-propanediol production through the C-O bond breakage. From the galvanostatic electrolysis, 1,2-propanediol selectivity was higher on 80ACC (88.6%) compared to 60ACC (61.4%), 70ACC (70.4%) and 90ACC (72.5%). Diethylene glycol formation was found to be the side reaction but preferred low activated carbon percentage in 60ACC and 70ACC.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links