This study examines how the COVID-19 pandemic has impacted the academic experience at international branch campuses (IBCs) and has changed the relationship between the IBC and the home campus. Semi-structured interviews with 26 leaders, academic staff, and students at seven IBCs in Malaysia revealed that the COVID-19 pandemic has changed the experience at IBCs in unique ways, including collaboration and communication with the home campus; increasing campus-specific resources for student wellbeing; and playing a larger role in student enrollment, recruitment, and mobility initiatives. Findings provide useful insights for higher education institutions (HEIs) engaged in transnational education (TNE).
Previous studies have found Kunjin (KUN) virus isolates from within Australia to be genetically homogenous and that the envelope protein of the type strain (MRM61C) was unglycosylated and lacked a potential glycosylation site. We investigated the extent of antigenic variation between KUN virus isolates from Australia and Sarawak using an immunoperoxidase assay and a panel of six monoclonal antibodies. The glycosylation status of the E protein of each virus was also determined by N glycosidase F (PNGase F) digestion and limited sequence analysis. The results showed that KUN viruses isolated within Australia oscillated between three antigenic types defined by two epitopes whose expression was influenced by passage history and host cell type. In contrast an isolate from Sarawak formed a stable antigenic type that was not influenced by passage history and was distinct from all Australian isolates. PNGase F digestions of KUN isolates indicated that 19 of the 33 viruses possessed a glycosylated E protein. Nucleotide sequence of the 5' third of the E gene of selected KUN isolates revealed that a single base change in PNGase F sensitive strains changed the tripeptide N-Y-F (amino acids 154-156 of the published sequence) to the potential glycosylation site N-Y-S. Further analysis revealed that passage history also had a significant influence on glycosylation.