AIMS: A variation of anisotropic diffusion is proposed that can reduce speckle noise without compromising the image quality of the edges and other important details.
METHODS: For this technique, four gradient thresholds were adopted instead of one. A new diffusivity function that preserves the edge of the resultant image is also proposed. To automatically terminate the iterative procedures, the Mean Absolute Error as its stopping criterion was implemented.
RESULTS: Numerical results obtained by simulations unanimously indicate that the proposed method outperforms conventional speckle reduction techniques. Nevertheless, this preliminary study has been conducted based on a small number of asymptomatic subjects.
CONCLUSION: Future work must investigate the feasibility of this method in a large cohort and its clinical validity through testing subjects with a symptomatic cartilage injury.
OBJECTIVE: To develop effective hybrid techniques that combine the optimal control theory (OCT) with the evolutionary algorithm and multi-objective swarm algorithm. The developed technique is aimed to reduce the number of cancerous cells while utilizing the minimum necessary chemotherapy medications and minimizing toxicity to protect patients' health.
METHODS: Two hybrid techniques are proposed in this paper. Both techniques combined OCT with the evolutionary algorithm and multi-objective swarm algorithm which included MOEA/D, MOPSO, SPEA II and PESA II. This study evaluates the performance of two hybrid techniques in terms of reducing cancer cells and drug concentrations, as well as computational time consumption.
RESULTS: In both techniques, MOEA/D emerges as the most effective algorithm due to its superior capability in minimizing tumour size and cancer drug concentration.
CONCLUSION: This study highlights the importance of integrating OCT and evolutionary algorithms as a robust approach for optimizing cancer chemotherapy treatment.