Displaying all 13 publications

Abstract:
Sort:
  1. Chin SC, Chow CO, Kanesan J, Chuah JH
    Sensors (Basel), 2022 Jan 14;22(2).
    PMID: 35062601 DOI: 10.3390/s22020639
    Image noise is a variation of uneven pixel values that occurs randomly. A good estimation of image noise parameters is crucial in image noise modeling, image denoising, and image quality assessment. To the best of our knowledge, there is no single estimator that can predict all noise parameters for multiple noise types. The first contribution of our research was to design a noise data feature extractor that can effectively extract noise information from the image pair. The second contribution of our work leveraged other noise parameter estimation algorithms that can only predict one type of noise. Our proposed method, DE-G, can estimate additive noise, multiplicative noise, and impulsive noise from single-source images accurately. We also show the capability of the proposed method in estimating multiple corruptions.
  2. Shoaib MA, Hossain MB, Hum YC, Chuah JH, Mohd Salim MI, Lai KW
    Curr Med Imaging, 2020;16(6):739-751.
    PMID: 32723246 DOI: 10.2174/1573405615666190903143330
    BACKGROUND: Ultrasound (US) imaging can be a convenient and reliable substitute for magnetic resonance imaging in the investigation or screening of articular cartilage injury. However, US images suffer from two main impediments, i.e., low contrast ratio and presence of speckle noise.

    AIMS: A variation of anisotropic diffusion is proposed that can reduce speckle noise without compromising the image quality of the edges and other important details.

    METHODS: For this technique, four gradient thresholds were adopted instead of one. A new diffusivity function that preserves the edge of the resultant image is also proposed. To automatically terminate the iterative procedures, the Mean Absolute Error as its stopping criterion was implemented.

    RESULTS: Numerical results obtained by simulations unanimously indicate that the proposed method outperforms conventional speckle reduction techniques. Nevertheless, this preliminary study has been conducted based on a small number of asymptomatic subjects.

    CONCLUSION: Future work must investigate the feasibility of this method in a large cohort and its clinical validity through testing subjects with a symptomatic cartilage injury.

  3. Koay HV, Chuah JH, Chow CO, Chang YL, Rudrusamy B
    Sensors (Basel), 2021 Jul 15;21(14).
    PMID: 34300577 DOI: 10.3390/s21144837
    Distracted driving is the prime factor of motor vehicle accidents. Current studies on distraction detection focus on improving distraction detection performance through various techniques, including convolutional neural networks (CNNs) and recurrent neural networks (RNNs). However, the research on detection of distracted drivers through pose estimation is scarce. This work introduces an ensemble of ResNets, which is named Optimally-weighted Image-Pose Approach (OWIPA), to classify the distraction through original and pose estimation images. The pose estimation images are generated from HRNet and ResNet. We use ResNet101 and ResNet50 to classify the original images and the pose estimation images, respectively. An optimum weight is determined through grid search method, and the predictions from both models are weighted through this parameter. The experimental results show that our proposed approach achieves 94.28% accuracy on AUC Distracted Driver Dataset.
  4. Tan YY, Chow CO, Kanesan J, Chuah JH, Lim Y
    Wirel Pers Commun, 2023;129(3):2213-2237.
    PMID: 36987507 DOI: 10.1007/s11277-023-10235-4
    Social media platforms such as Twitter and Facebook have become popular channels for people to record and express their feelings, opinions, and feedback in the last decades. With proper extraction techniques such as sentiment analysis, this information is useful in many aspects, including product marketing, behavior analysis, and pandemic management. Sentiment analysis is a technique to analyze people's thoughts, feelings and emotions, and to categorize them into positive, negative, or neutral. There are many ways for someone to express their feelings and emotions. These sentiments are sometimes accompanied by sarcasm, especially when conveying intense emotion. Sarcasm is defined as a positive sentence with underlying negative intention. Most of the current research work treats them as two distinct tasks. To date, most sentiment and sarcasm classification approaches have been treated primarily and standalone as a text categorization problem. In recent years, research work using deep learning algorithms have significantly improved performance for these standalone classifiers. One of the major issues faced by these approaches is that they could not correctly classify sarcastic sentences as negative. With this in mind, we claim that knowing how to spot sarcasm will help sentiment classification and vice versa. Our work has shown that these two tasks are correlated. This paper proposes a multi-task learning-based framework utilizing a deep neural network to model this correlation to improve sentiment analysis's overall performance. The proposed method outperforms the existing methods by a margin of 3%, with an F1-score of 94%.
  5. Shazia A, Xuan TZ, Chuah JH, Usman J, Qian P, Lai KW
    PMID: 34335736 DOI: 10.1186/s13634-021-00755-1
    Coronavirus disease of 2019 or COVID-19 is a rapidly spreading viral infection that has affected millions all over the world. With its rapid spread and increasing numbers, it is becoming overwhelming for the healthcare workers to rapidly diagnose the condition and contain it from spreading. Hence it has become a necessity to automate the diagnostic procedure. This will improve the work efficiency as well as keep the healthcare workers safe from getting exposed to the virus. Medical image analysis is one of the rising research areas that can tackle this issue with higher accuracy. This paper conducts a comparative study of the use of the recent deep learning models (VGG16, VGG19, DenseNet121, Inception-ResNet-V2, InceptionV3, Resnet50, and Xception) to deal with the detection and classification of coronavirus pneumonia from pneumonia cases. This study uses 7165 chest X-ray images of COVID-19 (1536) and pneumonia (5629) patients. Confusion metrics and performance metrics were used to analyze each model. Results show DenseNet121 (99.48% of accuracy) showed better performance when compared with the other models in this study.
  6. Teo K, Yong CW, Chuah JH, Hum YC, Tee YK, Xia K, et al.
    Arab J Sci Eng, 2021 Aug 16.
    PMID: 34422543 DOI: 10.1007/s13369-021-06040-5
    Hospital readmission shortly after discharge threatens the quality of patient care and leads to increased medical care costs. In the United States, hospitals with high readmission rates are subject to federal financial penalties. This concern calls for incentives for healthcare facilities to reduce their readmission rates by predicting patients who are at high risk of readmission. Conventional practices involve the use of rule-based assessment scores and traditional statistical methods, such as logistic regression, in developing risk prediction models. The recent advancements in machine learning driven by improved computing power and sophisticated algorithms have the potential to produce highly accurate predictions. However, the value of such models could be overrated. Meanwhile, the use of other flexible models that leverage simple algorithms offer great transparency in terms of feature interpretation, which is beneficial in clinical settings. This work presents an overview of the current trends in risk prediction models developed in the field of readmission. The various techniques adopted by researchers in recent years are described, and the topic of whether complex models outperform simple ones in readmission risk stratification is investigated.
  7. Yek PNY, Liew RK, Osman MS, Lee CL, Chuah JH, Park YK, et al.
    J Environ Manage, 2019 Apr 15;236:245-253.
    PMID: 30735943 DOI: 10.1016/j.jenvman.2019.01.010
    Microwave-steam activation (MSA), an innovative pyrolysis approach combining the use of microwave heating and steam activation, was investigated for its potential production of high grade activated carbon (AC) from waste palm shell (WPS) for methylene blue removal. MSA was performed via pyrolytic carbonization of WPS to produce biochar as the first step followed by steam activation of the biochar using microwave heating to form AC. Optimum yield and adsorption efficiency of methylene blue were obtained using response surface methodology involving several key process parameters. The resulting AC was characterized for its porous characteristics, surface morphology, proximate analysis and elemental compositions. MSA provided a high activation temperature above 500 °C with short process time of 15 min and rapid heating rate (≤150 °C/min). The results from optimization showed that one gram of AC produced from steam activation under 10 min of microwave heating at 550 °C can remove up to 38.5 mg of methylene blue. The AC showed a high and uniform surface porosity consisting high fixed carbon (73 wt%), micropore and BET surface area of 763.1 and 570.8 m2/g respectively, hence suggesting the great potential of MSA as a promising approach to produce high grade adsorbent for dye removal.
  8. Zhao Z, Chuah JH, Lai KW, Chow CO, Gochoo M, Dhanalakshmi S, et al.
    Front Comput Neurosci, 2023;17:1038636.
    PMID: 36814932 DOI: 10.3389/fncom.2023.1038636
    Alzheimer's disease (AD) is a neurodegenerative disorder that causes memory degradation and cognitive function impairment in elderly people. The irreversible and devastating cognitive decline brings large burdens on patients and society. So far, there is no effective treatment that can cure AD, but the process of early-stage AD can slow down. Early and accurate detection is critical for treatment. In recent years, deep-learning-based approaches have achieved great success in Alzheimer's disease diagnosis. The main objective of this paper is to review some popular conventional machine learning methods used for the classification and prediction of AD using Magnetic Resonance Imaging (MRI). The methods reviewed in this paper include support vector machine (SVM), random forest (RF), convolutional neural network (CNN), autoencoder, deep learning, and transformer. This paper also reviews pervasively used feature extractors and different types of input forms of convolutional neural network. At last, this review discusses challenges such as class imbalance and data leakage. It also discusses the trade-offs and suggestions about pre-processing techniques, deep learning, conventional machine learning methods, new techniques, and input type selection.
  9. Serena Low WC, Chuah JH, Tee CATH, Anis S, Shoaib MA, Faisal A, et al.
    Comput Math Methods Med, 2021;2021:5528144.
    PMID: 34194535 DOI: 10.1155/2021/5528144
    Pneumonia is an infamous life-threatening lung bacterial or viral infection. The latest viral infection endangering the lives of many people worldwide is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes COVID-19. This paper is aimed at detecting and differentiating viral pneumonia and COVID-19 disease using digital X-ray images. The current practices include tedious conventional processes that solely rely on the radiologist or medical consultant's technical expertise that are limited, time-consuming, inefficient, and outdated. The implementation is easily prone to human errors of being misdiagnosed. The development of deep learning and technology improvement allows medical scientists and researchers to venture into various neural networks and algorithms to develop applications, tools, and instruments that can further support medical radiologists. This paper presents an overview of deep learning techniques made in the chest radiography on COVID-19 and pneumonia cases.
  10. Shoaib MA, Chuah JH, Ali R, Hasikin K, Khalil A, Hum YC, et al.
    Comput Intell Neurosci, 2023;2023:4208231.
    PMID: 36756163 DOI: 10.1155/2023/4208231
    Cardiac health diseases are one of the key causes of death around the globe. The number of heart patients has considerably increased during the pandemic. Therefore, it is crucial to assess and analyze the medical and cardiac images. Deep learning architectures, specifically convolutional neural networks have profoundly become the primary choice for the assessment of cardiac medical images. The left ventricle is a vital part of the cardiovascular system where the boundary and size perform a significant role in the evaluation of cardiac function. Due to automatic segmentation and good promising results, the left ventricle segmentation using deep learning has attracted a lot of attention. This article presents a critical review of deep learning methods used for the left ventricle segmentation from frequently used imaging modalities including magnetic resonance images, ultrasound, and computer tomography. This study also demonstrates the details of the network architecture, software, and hardware used for training along with publicly available cardiac image datasets and self-prepared dataset details incorporated. The summary of the evaluation matrices with results used by different researchers is also presented in this study. Finally, all this information is summarized and comprehended in order to assist the readers to understand the motivation and methodology of various deep learning models, as well as exploring potential solutions to future challenges in LV segmentation.
  11. Tan PL, Kanesan J, Chuah JH, Badruddin IA, Abdellatif A, Kamangar S, et al.
    Biomed Mater Eng, 2023 Dec 28.
    PMID: 38189746 DOI: 10.3233/BME-230150
    BACKGROUND: The scientific revolution in the treatment of many illnesses has been significantly aided by stem cells. This paper presents an optimal control on a mathematical model of chemotherapy and stem cell therapy for cancer treatment.

    OBJECTIVE: To develop effective hybrid techniques that combine the optimal control theory (OCT) with the evolutionary algorithm and multi-objective swarm algorithm. The developed technique is aimed to reduce the number of cancerous cells while utilizing the minimum necessary chemotherapy medications and minimizing toxicity to protect patients' health.

    METHODS: Two hybrid techniques are proposed in this paper. Both techniques combined OCT with the evolutionary algorithm and multi-objective swarm algorithm which included MOEA/D, MOPSO, SPEA II and PESA II. This study evaluates the performance of two hybrid techniques in terms of reducing cancer cells and drug concentrations, as well as computational time consumption.

    RESULTS: In both techniques, MOEA/D emerges as the most effective algorithm due to its superior capability in minimizing tumour size and cancer drug concentration.

    CONCLUSION: This study highlights the importance of integrating OCT and evolutionary algorithms as a robust approach for optimizing cancer chemotherapy treatment.

  12. Jamaludin MR, Lai KW, Chuah JH, Zaki MA, Hum YC, Tee YK, et al.
    Behav Neurol, 2021;2021:2684855.
    PMID: 34777631 DOI: 10.1155/2021/2684855
    Spine surgeries impose risk to the spine's surrounding anatomical and physiological structures especially the spinal cord and the nerve roots. Intraoperative neuromonitoring (IONM) is a technology developed to monitor the integrity of the spinal cord and the nerve roots via the surgery. Transcranial motor evoked potential (TcMEP) (one of the IONM modalities) is adopted to monitor the integrity of the motor pathway of the spinal cord and the motor nerve roots. Recent research suggested that the IONM is conducive as a prognostic tool towards the patient's functional outcome. This paper summarizes the researches of IONM being adopted as a prognostic tool. In addition, this paper highlights the problems associated with the signal parameters as the improvement criteria in the previous researches. Lastly, we review the challenges of TcMEP to achieve a prognostic tool focusing on the factors that could interfere with the generation of a stable TcMEP response. The final section will discuss recommendations for IONM technology to achieve an objective prognostic tool.
  13. Haw YH, Lai KW, Chuah JH, Bejo SK, Husin NA, Hum YC, et al.
    PeerJ Comput Sci, 2023;9:e1325.
    PMID: 37346512 DOI: 10.7717/peerj-cs.1325
    Oil palm is a key agricultural resource in Malaysia. However, palm disease, most prominently basal stem rot caused at least RM 255 million of annual economic loss. Basal stem rot is caused by a fungus known as Ganoderma boninense. An infected tree shows few symptoms during early stage of infection, while potentially suffers an 80% lifetime yield loss and the tree may be dead within 2 years. Early detection of basal stem rot is crucial since disease control efforts can be done. Laboratory BSR detection methods are effective, but the methods have accuracy, biosafety, and cost concerns. This review article consists of scientific articles related to the oil palm tree disease, basal stem rot, Ganoderma Boninense, remote sensors and deep learning that are listed in the Web of Science since year 2012. About 110 scientific articles were found that is related to the index terms mentioned and 60 research articles were found to be related to the objective of this research thus included in this review article. From the review, it was found that the potential use of deep learning methods were rarely explored. Some research showed unsatisfactory results due to limitations on dataset. However, based on studies related to other plant diseases, deep learning in combination with data augmentation techniques showed great potentials, showing remarkable detection accuracy. Therefore, the feasibility of analyzing oil palm remote sensor data using deep learning models together with data augmentation techniques should be studied. On a commercial scale, deep learning used together with remote sensors and unmanned aerial vehicle technologies showed great potential in the detection of basal stem rot disease.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links