Displaying all 4 publications

Abstract:
Sort:
  1. Idros N, Chu D
    ACS Sens, 2018 09 28;3(9):1756-1764.
    PMID: 30193067 DOI: 10.1021/acssensors.8b00490
    Heavy metals are highly toxic at trace levels and their pollution has shown great threat to the environment and public health worldwide where current detection methods require expensive instrumentation and laborious operation, which can only be accomplished in centralized laboratories. Herein, we report a low-cost, paper-based microfluidic analytical device (μPAD) for facile, portable, and disposable monitoring of mercury, lead, chromium, nickel, copper, and iron ions. Triple indicators or ligands that contain ions or molecules are preloaded on the μPADs and upon addition of a metal ion, the colorimetric indicators will elicit color changes observed by the naked eyes. The color features were quantitatively analyzed in a three-dimensional space of red, green, and blue or the RGB-space using digital imaging and color calibration techniques. The sensing platform offers higher accuracy for cross references, and is capable of simultaneous detection and discrimination of different metal ions in even real water samples. It demonstrates great potential for semiquantitative and even qualitative analysis with a sensitivity below the safe limit concentrations, and a controlled error range.
  2. Idros N, Ho MY, Pivnenko M, Qasim MM, Xu H, Gu Z, et al.
    Sensors (Basel), 2015;15(6):12891-905.
    PMID: 26046595 DOI: 10.3390/s150612891
    This proof-of-concept study proposes a novel sensing mechanism for selective and label-free detection of 2,4,6-trinitrotoluene (TNT). It is realized by surface chemistry functionalization of silica nanoparticles (NPs) with 3-aminopropyl-triethoxysilane (APTES). The primary amine anchored to the surface of the silica nanoparticles (SiO2-NH2) acts as a capturing probe for TNT target binding to form Meisenheimer amine-TNT complexes. A colorimetric change of the self-assembled (SAM) NP samples from the initial green of a SiO2-NH2 nanoparticle film towards red was observed after successful attachment of TNT, which was confirmed as a result of the increased separation between the nanoparticles. The shift in the peak wavelength of the reflected light normal to the film surface and the associated change of the peak width were measured, and a merit function taking into account their combined effect was proposed for the detection of TNT concentrations from 10-12 to 10-4 molar. The selectivity of our sensing approach is confirmed by using TNT-bound nanoparticles incubated in AptamerX, with 2,4-dinitrotoluene (DNT) and toluene used as control and baseline, respectively. Our results show the repeatable systematic color change with the TNT concentration and the possibility to develop a robust, easy-to-use, and low-cost TNT detection method for performing a sensitive, reliable, and semi-quantitative detection in a wide detection range.
  3. Yang L, Lei Y, Chu D, Jiang J, Li Z, Tang Y, et al.
    PLoS One, 2024;19(3):e0300040.
    PMID: 38483916 DOI: 10.1371/journal.pone.0300040
    INTRODUCTION: High levels of burnout are prevalent among Emergency Department staff due to chronic exposure to job stress. There is a lack of knowledge about anteceding factors and outcomes of burnout in this population.

    AIMS: To provide a comprehensive overview of burnout and identify its workplace antecedents and outcomes among Emergency Department staff.

    METHODS: The scoping study will follow the methodology outlined by the Joanna Briggs Institute. PubMed, Scopus, Web of Science, APA PsycInfo, and CINAHL databases will be searched using predefined strategies. Two reviewers will screen the title, abstract and full text separately based on the eligibility criteria. Data will be charted, coded, and narratively synthesized based on the job demands-resources model.

    CONCLUSION: The results will provide insights into the underlying work-related factors contributing to burnout and its implications for individuals, healthcare organizations, and patient care.

  4. Bousquet J, Melén E, Haahtela T, Koppelman GH, Togias A, Valenta R, et al.
    Allergy, 2023 Feb 17.
    PMID: 36799120 DOI: 10.1111/all.15679
    Asthma, rhinitis, and atopic dermatitis (AD) are interrelated clinical phenotypes that partly overlap in the human interactome. The concept of "one-airway-one-disease," coined over 20 years ago, is a simplistic approach of the links between upper- and lower-airway allergic diseases. With new data, it is time to reassess the concept. This article reviews (i) the clinical observations that led to Allergic Rhinitis and its Impact on Asthma (ARIA), (ii) new insights into polysensitization and multimorbidity, (iii) advances in mHealth for novel phenotype definitions, (iv) confirmation in canonical epidemiologic studies, (v) genomic findings, (vi) treatment approaches, and (vii) novel concepts on the onset of rhinitis and multimorbidity. One recent concept, bringing together upper- and lower-airway allergic diseases with skin, gut, and neuropsychiatric multimorbidities, is the "Epithelial Barrier Hypothesis." This review determined that the "one-airway-one-disease" concept does not always hold true and that several phenotypes of disease can be defined. These phenotypes include an extreme "allergic" (asthma) phenotype combining asthma, rhinitis, and conjunctivitis. Rhinitis alone and rhinitis and asthma multimorbidity represent two distinct diseases with the following differences: (i) genomic and transcriptomic background (Toll-Like Receptors and IL-17 for rhinitis alone as a local disease; IL-33 and IL-5 for allergic and non-allergic multimorbidity as a systemic disease), (ii) allergen sensitization patterns (mono- or pauci-sensitization versus polysensitization), (iii) severity of symptoms, and (iv) treatment response. In conclusion, rhinitis alone (local disease) and rhinitis with asthma multimorbidity (systemic disease) should be considered as two distinct diseases, possibly modulated by the microbiome, and may be a model for understanding the epidemics of chronic and autoimmune diseases.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links