AIM: This is a planned interim analysis of pathfinder™3, an international, open-label, Phase 3 trial evaluating the efficacy and safety (including immunogenicity) of N8-GP administered before, during and after major surgery in severe haemophilia A patients aged ≥12 years.
METHODS: Sixteen patients who underwent 18 major surgical procedures (including synovectomy, joint replacement and ankle arthrodesis) were included here. Postoperative assessments were conducted daily for days 1-6, and once for days 7-14. Primary endpoint was N8-GP haemostatic efficacy, assessed after completion of surgery using a four-point scale ('excellent', 'good', 'moderate', 'none').
RESULTS: Haemostasis was successful (rated 'excellent' or 'good') on completion of surgery in 17 (94.4%) procedures and rated as 'moderate' (5.6%) for one surgery in a patient with multiple comorbidities who needed an intraoperative N8-GP dose (20.7 IU kg-1 ). In the postoperative period, three bleeds occurred (one during days 1-6; two during days 7-14); all were successfully treated with N8-GP. Mean N8-GP consumption on day of surgery was 80.0 IU kg-1 ; patients received a mean of 1.7 doses (median: 2, range: 1-3). No safety concerns were identified.
CONCLUSION: The data showed that N8-GP was effective and well tolerated for the prevention and treatment of bleeds during major surgery; such FVIII products with extended half-lives may modify current treatment schedules, enabling fewer infusions and earlier patient discharge.
AIM: Evaluate the efficacy and safety of turoctocog alfa pegol treatment for major and minor surgeries in the pathfinder 3 and 5 phase III trials.
METHODS: Adults/adolescents aged ≥12 years with severe haemophilia A (FVIII <1%) received perioperative turoctocog alfa pegol treatment planned to achieve FVIII activity levels >80% during major surgery (pathfinder 3). The primary end point was haemostatic efficacy during surgery; secondary end points were blood loss, haemostatic effect postsurgery, consumption, transfusions, safety and health economics. Children (0-11 years) undergoing minor surgeries received 20-75 IU/kg turoctocog alfa pegol at Investigator's discretion (pathfinder 5).
RESULTS: pathfinder 3 included 35 patients undergoing 49 major surgeries. Haemostasis was successful in 47/49 (95.9%) surgeries; two had moderate haemostatic responses. Median (mean) blood loss during major surgery was 75 (322.6) mL. Four bleeds were reported postsurgery; three were successfully treated with turoctocog alfa pegol (one was not evaluated). On the day of surgery, overall mean (median) dose was 75.5 (74.5) IU/kg and mean (median) number of doses was 1.7 (2.0). Five procedures required 11 transfusions on the day of surgery or days 1-6. No safety concerns or inhibitors were identified. Forty-five minor surgeries in 23 children were performed without complications.
CONCLUSION: Turoctocog alfa pegol was effective for perioperative haemostatic management of major and minor surgeries in patients across age groups with severe haemophilia A.
METHODS: This prospective, multicentre, open-label, randomised, phase 3a trial (explorer8) was conducted at 69 investigational sites in 31 countries. Eligible patients were male, aged 12 years or older, and had congenital severe haemophilia A or moderate or severe haemophilia B without inhibitors and with documented treatment with clotting factor concentrate in the 24 weeks before screening. The trial was paused because of non-fatal thromboembolic events in three patients (two from this trial [explorer8] and one from a related trial in haemophilia with inhibitors [explorer7; NCT04083781]) and restarted with mitigation measures, including a revised dosing regimen of subcutaneous concizumab at 1·0 mg/kg loading dose on day 1 and subsequent daily doses of 0·20 mg/kg from day 2, with options to decrease to 0·15 mg/kg, stay on 0·20 mg/kg, or increase to 0·25 mg/kg on the basis of concizumab plasma concentration measured after 4 weeks on concizumab. Patients recruited after treatment restart were randomly assigned 1:2 using an interactive web response system to receive no prophylaxis and continue on-demand clotting factor (group 1) or concizumab prophylaxis (group 2). The primary endpoints were the number of treated spontaneous and traumatic bleeding episodes for patients with haemophilia A and haemophilia B separately, assessed at the confirmatory analysis cutoff in randomly assigned patients. Analyses were by intention-to-treat. There were two additional groups containing non-randomly-assigned patients: group 3 contained patients who entered the trial before the trial pause and were receiving concizumab in the phase 2 trial (explorer5; NCT03196297), and group 4 contained patients who received previous clotting factor concentrate prophylaxis or on-demand treatment in the non-interventional trial (explorer6; NCT03741881), patients randomly assigned to groups 1 or 2 before the treatment pause, and patients from explorer5 enrolled after the treatment pause. The safety analysis set contained all patients who received concizumab. Superiority of concizumab over no prophylaxis was established if the two-sided 95% CI of the treatment ratio was less than 1 for haemophilia A and for haemophilia B. This trial is registered with ClinicalTrials.gov, NCT04082429, and its extension part is ongoing.
FINDINGS: Patients were recruited between Nov 13, 2019 and Nov 30, 2021; the cutoff date for the analyses presented was July 12, 2022. 173 patients were screened, of whom 148 (86%) were randomly assigned or allocated to the four groups in the study after trial restart on Sept 30, 2020 (nine with haemophilia A and 12 with haemophilia B in group 1; 18 with haemophilia A and 24 with haemophilia B in group 2; nine with haemophilia A in group 3; and 46 with haemophilia A and 30 with haemophilia B in group 4). The estimated mean annualised bleeding rate ratio for treated spontaneous and traumatic bleeding episodes during concizumab prophylaxis versus no prophylaxis was 0·14 (95% CI 0·07-0·29; p<0·0001) for patients with haemophilia A and 0·21 (0·10-0·45; p<0·0001) for patients with haemophilia B. The most frequent adverse events in patients who received concizumab were SARS-CoV-2 infection (19 [13%] of 151 patients), an increase in fibrin D-dimers (12 [8%] patients), and upper respiratory tract infection (ten [7%] patients). There was one fatal adverse event possibly related to treatment (intra-abdominal haemorrhage in a patient from group 4 with haemophilia A with a long-standing history of hypertension). No thromboembolic events were reported between the trial restart and confirmatory analysis cutoff.
INTERPRETATION: Concizumab was effective in reducing the bleeding rate compared with no prophylaxis and was considered safe in patients with haemophilia A or B without inhibitors. The results of this trial suggest that concizumab has the potential to be one of the first subcutaneous treatment options for patients with haemophilia B without inhibitors.
FUNDING: Novo Nordisk.