Displaying all 15 publications

Abstract:
Sort:
  1. Pang YL, Lim S, Ong HC, Chong WT
    Ultrason Sonochem, 2016 Mar;29:317-27.
    PMID: 26585012 DOI: 10.1016/j.ultsonch.2015.10.003
    In this work, γ-Fe2O3 and TiO2 NTs/γ-Fe2O3 composites with good magnetism and sonocatalytic activity were prepared by a facile polyol method and utilize the principle of isoelectric point method, respectively. The structural and magnetic features of the prepared calcined γ-Fe2O3 and composite catalysts were investigated by transmission electron microscopy (TEM), powder X-ray diffraction (XRD), surface analysis, UV-Vis diffuse reflectance spectra (UV-Vis DRS), vibrating sample magnetometry (VSM) and zeta potential analysis. The effects of calcination temperature on γ-Fe2O3 phase variation, physical properties and sonocatalytic properties were investigated. The porosity, specific surface area, band gap energy and sonocatalytic activity of γ-Fe2O3 were gradually decreased with calcination temperature increased. TiO2 NTs/γ-Fe2O3 with appropriate composition and specific structural features possess synergetic effects such as efficient separation of charge carriers and hydroxyl radicals produced by heterogeneous fenton and fenton-like reactions. This enhanced the sonocatalytic activity for the degradation of Orange G under ultrasonic irradiation. The sonocatalytic reactions obeyed pseudo first-order kinetics. All these information provide insight into the design and development of high-efficiency catalyst for wastewater treatment.
  2. Bayat AE, Junin R, Shamshirband S, Chong WT
    Sci Rep, 2015;5:14264.
    PMID: 26373598 DOI: 10.1038/srep14264
    Engineered aluminum oxide (Al2O3), titanium dioxide (TiO2), and silicon dioxide (SiO2) nanoparticles (NPs) are utilized in a broad range of applications; causing noticeable quantities of these materials to be released into the environment. Issues of how and where these particles are distributed into the subsurface aquatic environment remain as major challenges for those in environmental engineering. In this study, transport and retention of Al2O3, TiO2, and SiO2 NPs through various saturated porous media were investigated. Vertical columns were packed with quartz-sand, limestone, and dolomite grains. The NPs were introduced as a pulse suspended in aqueous solutions and breakthrough curves in the column outlet were generated using an ultraviolet-visible spectrophotometer. It was found that Al2O3 and TiO2 NPs are easily transported through limestone and dolomite porous media whereas NPs recoveries were achieved two times higher than those found in the quartz-sand. The highest and lowest SiO2-NPs recoveries were also achieved from the quartz-sand and limestone columns, respectively. The experimental results closely replicated the general trends predicted by the filtration and DLVO calculations. Overall, NPs mobility through a porous medium was found to be strongly dependent on NP surface charge, NP suspension stability against deposition, and porous medium surface charge and roughness.
  3. Ganandran GS, Mahlia TM, Ong HC, Rismanchi B, Chong WT
    ScientificWorldJournal, 2014;2014:745894.
    PMID: 25133258 DOI: 10.1155/2014/745894
    This paper reports the result of an investigation on the potential energy saving of the lighting systems at selected buildings of the Universiti Tenaga Nasional. The scope of this project includes evaluation of the lighting system in the Library, Admin Building, College of Engineering, College of Information Technology, Apartments, and COE Food court of the university. The main objectives of this project are to design the proper retrofit scenario and to calculate the potential electricity saving, the payback period, and the potential environmental benefits. In this survey the policy for retrofitting the old lighting system with the new energy saving LEDs starts with 10% for the first year and continues constantly for 10 years until all the lighting systems have been replaced. The result of the life cycle analysis reveals that after four years, the selected buildings will bring profit for the investment.
  4. Aditiya HB, Chong WT, Mahlia TM, Sebayang AH, Berawi MA, Nur H
    Waste Manag, 2016 Jan;47(Pt A):46-61.
    PMID: 26253329 DOI: 10.1016/j.wasman.2015.07.031
    Rising global temperature, worsening air quality and drastic declining of fossil fuel reserve are the inevitable phenomena from the disorganized energy management. Bioethanol is believed to clear out the effects as being an energy-derivable product sourced from renewable organic sources. Second generation bioethanol interests many researches from its unique source of inedible biomass, and this paper presents the potential of several selected biomasses from Malaysia case. As one of countries with rich biodiversity, Malaysia holds enormous potential in second generation bioethanol production from its various agricultural and forestry biomasses, which are the source of lignocellulosic and starch compounds. This paper reviews potentials of biomasses and potential ethanol yield from oil palm, paddy (rice), pineapple, banana and durian, as the common agricultural waste in the country but uncommon to be served as bioethanol feedstock, by calculating the theoretical conversion of cellulose, hemicellulose and starch components of the biomasses into bioethanol. Moreover, the potential of the biomasses as feedstock are discussed based on several reported works.
  5. Chang L, Chong WT, Wang X, Pei F, Zhang X, Wang T, et al.
    Environ Sci Process Impacts, 2021 May 26;23(5):642-663.
    PMID: 33889885 DOI: 10.1039/d1em00002k
    Nowadays, PM2.5 concentrations greatly influence indoor air quality in subways and threaten passenger and staff health because PM2.5 not only contains heavy metal elements, but can also carry toxic and harmful substances due to its small size and large specific surface area. Exploring the physicochemical and distribution characteristics of PM2.5 in subways is necessary to limit its concentration and remove it. At present, there are numerous studies on PM2.5 in subways around the world, yet, there is no comprehensive and well-organized review available on this topic. This paper reviews the nearly twenty years of research and over 130 published studies on PM2.5 in subway stations, including aspects such as concentration levels and their influencing factors, physicochemical properties, sources, impacts on health, and mitigation measures. Although many determinants of station PM2.5 concentration have been reported in current studies, e.g., the season, outdoor environment, and station depth, their relative influence is uncertain. The sources of subway PM2.5 include those from the exterior (e.g., road traffic and fuel oil) and the interior (e.g., steel wheels and rails and metallic brake pads), but the proportion of these sources is also unknown. Control strategies of PM mainly include adequate ventilation and filtration, but these measures are often inefficient in removing PM2.5. The impacts of PM2.5 from subways on human health are still poorly understood. Further research should focus on long-term data collection, influencing factors, the mechanism of health impacts, and PM2.5 standards or regulations.
  6. Tan H, Wong KY, Nyakuma BB, Kamar HM, Chong WT, Wong SL, et al.
    Environ Sci Pollut Res Int, 2022 Jan;29(5):6710-6721.
    PMID: 34458973 DOI: 10.1007/s11356-021-16171-9
    In this study, a systematic procedure for establishing the relationship between particulate matter (PM) and microbial counts in four operating rooms (ORs) was developed. The ORs are located in a private hospital on the western coast of Peninsular Malaysia. The objective of developing the systematic procedure is to ensure that the correlation between the PMs and microbial counts are valid. Each of the procedures is conducted based on the ISO, IEST, and NEBB standards. The procedures involved verifying the operating parameters are air change rate, room differential pressure, relative humidity, and air temperature. Upon verifying that the OR parameters are in the recommended operating range, the measurements of the PMs and sampling of the microbes were conducted. The TSI 9510-02 particle counter was used to measure three different sizes of PMs: PM 0.5, PM 5, and PM 10. The MAS-100ECO air sampler was used to quantify the microbial counts. The present study confirms that PM 0.5 does not have an apparent positive correlation with the microbial count. However, the evident correlation of 7% and 15% were identified for both PM 5 and PM 10, respectively. Therefore, it is suggested that frequent monitoring of both PM 5 and PM 10 should be practised in an OR before each surgical procedure. This correlation approach could provide an instantaneous estimation of the microbial counts present in the OR.
  7. Chang L, Chong WT, Yau YH, Cui T, Wang XR, Pei F, et al.
    PMID: 37360559 DOI: 10.1007/s13762-023-04994-7
    Air quality in subway systems is crucial as it affects the health of passengers and staff. Although most tests of PM2.5 concentrations in subway stations have taken place in public areas, PM2.5 is less understood in workplaces. Few studies have estimated the cumulative inhaled dose of passengers based on real-time changes in PM2.5 concentrations as they commute. To clarify the above issues, this study first measured PM2.5 concentrations in four subway stations in Changchun, China, where measuring points included five workrooms. Then, passengers' exposure to PM2.5 during the whole subway commute (20-30 min) was measured and segmented inhalation was calculated. The results showed that PM2.5 concentration in public places ranged from 50 to 180 μg/m3, and was strongly correlated with outdoors. While the PM2.5 average concentration in workplaces was 60 µg/m3, and it was less affected by outdoor PM2.5 concentration. Passenger's cumulative inhalations in single commuting were about 42 μg and 100 μg when the outdoor PM2.5 concentrations were 20-30 μg/m3 and 120-180 μg/m3, respectively. The PM2.5 inhalation in carriages accounted for the largest proportion of the entire commuting, about 25-40%, because of the longer exposure time and higher PM2.5 concentrations. It is recommended to improve the tightness of the carriage and filter the fresh air to improve the air quality inside. The average daily PM2.5 inhaled by staff was 513.53 μg, which was 5-12 times higher than that of passengers. Installing air purification devices in workplaces and reminding staff to take personal protection can positively protect their health.
  8. Chong WT, Tan CP, Cheah YK, B Lajis AF, Habi Mat Dian NL, Kanagaratnam S, et al.
    PLoS One, 2018;13(8):e0202771.
    PMID: 30142164 DOI: 10.1371/journal.pone.0202771
    Red palm oil (RPO) is a natural source of Vitamin E (70-80% tocotrienol). It is a potent natural antioxidant that can be used in skin-care products. Its antioxidant property protects skin from inflammation and aging. In our work, a tocotrienol-rich RPO-based nanoemulsion formulation was optimized using response surface methodology (RSM) and formulated using high pressure homogenizer. Effect of the concentration of three independent variables [surfactant (5-15 wt%), co-solvent (10-30 wt%) and homogenization pressure (500-700 bar)] toward two response variables (droplet size, polydispersity index) was studied using central composite design (CCD) coupled to RSM. RSM analysis showed that the experimental data could be fitted into a second-order polynomial model and the coefficients of multiple determination (R2) is 0.9115. The optimized formulation of RPO-based nanoemulsion consisted of 6.09 wt% mixed surfactant [Tween 80/Span 80 (63:37, wt)], 20 wt% glycerol as a co-solvent via homogenization pressure (500 bar). The optimized tocotrienol-rich RPO-based nanoemulsion response values for droplet size and polydispersity index were 119.49nm and 0.286, respectively. The actual values of the formulated nanoemulsion were in good agreement with the predicted values obtained from RSM, thus the optimized compositions have the potential to be used as a nanoemulsion for cosmetic formulations.
  9. Wang CT, Sangeetha T, Yan WM, Chong WT, Saw LH, Zhao F, et al.
    J Environ Sci (China), 2019 Jan;75:163-168.
    PMID: 30473281 DOI: 10.1016/j.jes.2018.03.013
    Single-chamber sediment microbial fuel cells (SSMFCs) have received considerable attention nowadays because of their unique dual-functionality of power generation and enhancement of wastewater treatment performance. Thus, scaling up or upgrading SSMFCs for enhanced and efficient performance is a highly crucial task. Therefore, in order to achieve this goal, an innovative physical technique of using interface layers with four different pore sizes embedded in the middle of SSMFCs was utilized in this study. Experimental results showed that the performance of SSMFCs employing an interface layer was improved regardless of the pore size of the interface material, compared to those without such layers. The use of an interface layer resulted in a positive and significant effect on the performance of SSMFCs because of the effective prevention of oxygen diffusion from the cathode to the anode. Nevertheless, when a smaller pore size interface was utilized, better power performance and COD degradation were observed. A maximum power density of 0.032mW/m2 and COD degradation of 47.3% were obtained in the case of an interface pore size of 0.28μm. The findings in this study are of significance to promote the future practical application of SSMFCs in wastewater treatment plants.
  10. Wang CT, Huang YS, Sangeetha T, Chen YM, Chong WT, Ong HC, et al.
    Bioresour Technol, 2018 May;255:83-87.
    PMID: 29414177 DOI: 10.1016/j.biortech.2018.01.086
    Photosynthetic microbial fuel cells (PMFCs) are novel bioelectrochemical transducers that employ microalgae to generate oxygen, organic metabolites and electrons. Conventional PMFCs employ non-eco-friendly membranes, catalysts and phosphate buffer solution. Eliminating the membrane, buffer and catalyst can make the MFC a practical possibility. Therefore, single chambered (SPMFC) were constructed and operated at different recirculation flow rates (0, 40 and 240 ml/min) under bufferless conditions. Furthermore, maximum power density of 4.06 mW/m2, current density of 46.34 mA/m2 and open circuit potential of 0.43 V and low internal resistance of 611.8 Ω were obtained at 40 ml/min. Based on the results it was decided that SPMFC was better for operation at 40 ml/min. Therefore, these findings provided progressive insights for future pilot and industrial scale studies of PMFCs.
  11. Tan H, Othman MHD, Chong WT, Kek HY, Wong SL, Nyakuma BB, et al.
    J Environ Manage, 2024 Apr;356:120644.
    PMID: 38522274 DOI: 10.1016/j.jenvman.2024.120644
    Plastics are a wide range of synthetic or semi-synthetic materials, mainly consisting of polymers. The use of plastics has increased to over 300 million metric tonnes in recent years, and by 2050, it is expected to grow to 800 million. Presently, a mere 10% of plastic waste is recycled, with approximately 75% ended up in landfills. Inappropriate disposal of plastic waste into the environment poses a threat to human lives and marine species. Therefore, this review article highlights potential routes for converting plastic/microplastic waste into valuable resources to promote a greener and more sustainable environment. The literature review revealed that plastics/microplastics (P/MP) could be recycled or upcycled into various products or materials via several innovative processes. For example, P/MP are recycled and utilized as anodes in lithium-ion (Li-ion) and sodium-ion (Na-ion) batteries. The anode in Na-ion batteries comprising PP carbon powder exhibits a high reversible capacity of ∼340 mAh/g at 0.01 A/g current state. In contrast, integrating Fe3O4 and PE into a Li-ion battery yielded an excellent capacity of 1123 mAh/g at 0.5 A/g current state. Additionally, recycled Nylon displayed high physical and mechanical properties necessary for excellent application as 3D printing material. Induction heating is considered a revolutionary pyrolysis technique with improved yield, efficiency, and lower energy utilization. Overall, P/MPs are highlighted as abundant resources for the sustainable production of valuable products and materials such as batteries, nanomaterials, graphene, and membranes for future applications.
  12. Bernice QQL, Chong WT, Thilakarathna RCN, Tong SC, Tang TK, Phuah ET, et al.
    J Food Sci, 2024 Jul 11.
    PMID: 38992871 DOI: 10.1111/1750-3841.17240
    Nanofibrillated cellulose (NFC) from plant biomass is becoming popular, attributed to the protective encapsulation of bioactive compounds in Pickering emulsion, preventing degradation and stabilizing the emulsion. NFC, as a natural dietary fiber, is a prominent fat replacer, providing a quality enhancement to reduced-fat products. In this study, NFC Pickering emulsions were prepared at NFC concentrations of 0.2%, 0.4%, 0.6%, 0.8%, and 1% to encapsulate carotenoids. The NFC Pickering emulsions at NFC concentrations of 0.4%, 0.6%, 0.8%, and 1% were incorporated into margarine-like reduced fat (3%) spreads as the aqueous phase. Characterization of both NFC Pickering emulsion and the incorporated NFC Pickering emulsion, margarine-like reduced fat spreads, was conducted with mastersizer, rheometer, spectrophotometer, and texture analyzer. The particle size (73.67 ± 0.35 to 94.73 ± 2.21 nm), viscosity (138.36 ± 3.35 to 10545.00 ± 567.10 mPa s), and creaming stability (25% to 100% stable) of the NFC Pickering emulsions were increased significantly when increasing the NFC concentration, whereas the encapsulation efficiency was highest at NFC 0.4% and 0.6%. Although imitating the viscoelastic solid-like behavior of margarine was difficult, the NFC Pickering emulsion properties were still able to enhance hardness, slip melting point, and color of the reduced fat spreads compared to the full-fat margarine, especially at 0.6% of NFC. Overall, extensive performances of NFC can be seen in encapsulating carotenoids, especially at NFC concentrations of 0.4% and 0.6%, with the enhancement of Pickering emulsion stability while portraying futuristic possibilities as a fat replacer in margarine optimally at 0.6% of NFC concentration. PRACTICAL APPLICATION: Nanocellulose extracted from palm dried long fiber was utilized to encapsulate carotenoids and replace fats in margarine-like reduced fat (3%) spreads. Our study portrayed high encapsulation efficiency and successful fat replacement with promising stability performances. Hence, nanocellulose displayed extensive potential as encapsulating agents and fat replacers while providing quality and sustainability enhancements in reduced-fat food.
  13. Tan H, Othman MHD, Kek HY, Chong WT, Nyakuma BB, Wahab RA, et al.
    Environ Sci Pollut Res Int, 2024 Jul;31(32):44463-44488.
    PMID: 38943001 DOI: 10.1007/s11356-024-34075-2
    Indoor air quality (IAQ) in the built environment is significantly influenced by particulate matter, volatile organic compounds, and air temperature. Recently, the Internet of Things (IoT) has been integrated to improve IAQ and safeguard human health, comfort, and productivity. This review seeks to highlight the potential of IoT integration for monitoring IAQ. Additionally, the paper details progress by researchers in developing IoT/mobile applications for IAQ monitoring, and their transformative impact in smart building, healthcare, predictive maintenance, and real-time data analysis systems. It also outlines the persistent challenges (e.g., data privacy, security, and user acceptability), hampering effective IoT implementation for IAQ monitoring. Lastly, the global developments and research landscape on IoT for IAQ monitoring were examined through bibliometric analysis (BA) of 106 publications indexed in Web of Science from 2015 to 2022. BA revealed the most significant contributing countries are India and Portugal, while the top productive institutions and researchers are Instituto Politecnico da Guarda (10.37% of TP) and Marques Goncalo (15.09% of TP), respectively. Keyword analysis revealed four major research themes: IoT, pollution, monitoring, and health. Overall, this paper provides significant insights for identifying prospective collaborators, benchmark publications, strategic funding, and institutions for future IoT-IAQ researchers.
  14. Tan H, Wong KY, Othman MHD, Kek HY, Wahab RA, Ern GKP, et al.
    Environ Sci Pollut Res Int, 2022 Nov;29(53):80137-80160.
    PMID: 36194323 DOI: 10.1007/s11356-022-23407-9
    An indoor environment in a hospital building requires a high indoor air quality (IAQ) to overcome patients' risks of getting wound infections without interrupting the recovery process. However, several problems arose in obtaining a satisfactory IAQ, such as poor ventilation design strategies, insufficient air exchange, improper medical equipment placement and high door opening frequency. This paper presents an overview of various methods used for assessing the IAQ in hospital facilities, especially in an operating room, isolation room, anteroom, postoperative room, inpatient room and dentistry room. This review shows that both experimental and numerical methods demonstrated their advantages in the IAQ assessment. It was revealed that both airflow and particle tracking models could result in different particle dispersion predictions. The model selection should depend on the compatibility of the simulated result with the experimental measurement data. The primary and secondary forces affecting the characteristics of particle dispersion were also discussed in detail. The main contributing forces to the trajectory characteristics of a particle could be attributed to the gravitational force and drag force regardless of particle size. Meanwhile, the additional forces could be considered when there involves temperature gradient, intense light source, submicron particle, etc. The particle size concerned in a healthcare facility should be less than 20 μm as this particle size range showed a closer relationship with the virus load and a higher tendency to remain airborne. Also, further research opportunities that reflect a more realistic approach and improvement in the current assessment approach were proposed.
  15. Ng SW, Chong WT, Soo YT, Tang TK, Ab Karim NA, Phuah ET, et al.
    PLoS One, 2022;17(8):e0271512.
    PMID: 36044467 DOI: 10.1371/journal.pone.0271512
    Palm pressed fibre (PPF) is a lignocellulose biomass generated from palm oil mill that is rich in cellulose. The present work aimed to combine acid hydrolysis followed by high-pressure homogenisation (HPH) to produce nanocrystal cellulose (CNC) with enhanced physicochemical properties from PPF. PPF was alkaline treated, bleached, acid hydrolysed and homogenised under high pressure condition to prepare CNC. The effects of homogenisation pressure (10, 30, 50, 70 MPa) and cycles (1, 3, 5, 7) on the particle size, zeta potential and rheological properties of CNC produced were investigated. HPH was capable of producing CNC with better stability. Results revealed that utilizing 1 cycle of homogenisation at a pressure of 50 MPa resulted in CNC with the smallest dimension, highest aspect ratio, moderate viscosity and exceptionally high zeta potential. Subsequently, 0.15% (CNC 0.15 -PE) and 0.30% (CNC 0.30 -PE) of CNC was used to stabilise oil-in-water emulsions and their stability was evaluated against different pH, temperature and ionic strength. All the CNC-stabilised emulsions demonstrated good thermal stability. CNC 0.30 -PE exhibited larger droplets but higher stability than CNC 0.15 -PE. In short, CNC with gel like structure has a promising potential to serve as a natural Pickering emulsifier to stabilise oil-in-water emulsion in various food applications.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links