Displaying all 9 publications

Abstract:
Sort:
  1. Chong KC
    Postgrad Med J, 1976 Aug;52(610):504-10.
    PMID: 824633
    The incidence, clinical features and pathology of nine cases of diverticula of the appendix in Malaysians are reported. The findings are discussed and compared with those previously reported. The pathogenesis of the lesion in eight cases is unknown. The rare association of lumenal obstruction by a carcinoid tumour and diverticulum formation in the appendix is seen in one case.
  2. Sureisen M, Achannan R, Chong KC, Wong CC
    BMJ Case Rep, 2015 Oct 27;2015.
    PMID: 26508120 DOI: 10.1136/bcr-2015-212748
    Congenital spinal fusion of an odontoid process to an atlantal hemiarch is very rare. The unfamiliarity of the medical fraternity with this congenital malformation can easily be mistaken for an acute fracture, chronic infection or inflammatory disease. We present our experience of managing an adult who presented with neck pain after a motor vehicle accident. Radiological investigation revealed congenital fusion of the odontoid process to the atlantal hemiarch. The prevalence, embryology and clinical significance of this anomaly are discussed. As the natural progression of this anomaly is not well documented, we suggest periodic follow-up to monitor the progression of degenerative changes and instability of the occipitoatlantal junction.
  3. Adam BA, Soo-Hoo TS, Chong KC
    Australas J Dermatol, 1977 Apr;18(1):45-7.
    PMID: 883925
  4. Chong KC, Thang LY, Quirino JP, See HH
    J Chromatogr A, 2017 Feb 17;1485:142-146.
    PMID: 28104238 DOI: 10.1016/j.chroma.2017.01.012
    A portable microchip electrophoresis (MCE) coupled with on-chip contactless conductivity detection (C(4)D) system was evaluated for the determination of vancomycin in human plasma. In order to enhance the detection sensitivity, a new online multi-stacking preconcentration technique based on field-enhanced sample injection (FESI) and micelle-to-solvent stacking (MSS) was developed and implemented in MCE-C(4)D system equipped with a commercially available double T-junction glass chip. The cationic analytes from the two sample reservoirs were injected under FESI conditions and subsequently focused by MSS within the sample-loading channel. The proposed multi-stacking strategy was verified under a fluorescence microscope using Rhodamine 6G as the model analyte and a sensitivity enhancement factor (SEF) of up to 217 was achieved. The developed approach was subsequently implemented in the aqueous-based MCE, coupled to C(4)D in order to monitor the targeted antibiotic (in this case, vancomycin) present in human plasma samples. The multi-stacking and analysis time for vancomycin were 50s and 250s respectively, with SEF of approximately 83 when compared to typical gated injection. The detection limit of the method for vancomycin was 1.2μg/mL, with intraday and interday repeatability RSDs of 2.6% and 4.3%, respectively. Recoveries in spiked human plasma were 99.0%-99.2%.
  5. Chong KC, Lai SO, Lau WJ, Thiam HS, Ismail AF, Roslan RA
    Polymers (Basel), 2018 Jan 28;10(2).
    PMID: 30966162 DOI: 10.3390/polym10020126
    Air pollution is a widely discussed topic amongst the academic and industrial spheres as it can bring adverse effects to human health and economic loss. As humans spend most of their time at the office and at home, good indoor air quality with enriched oxygen concentration is particularly important. In this study, polysulfone (PSF) hollow fiber membranes fabricated by dry-jet wet phase inversion method were coated by a layer of polydimethylsiloxane (PDMS) or poly(ether block amide) (PEBAX) at different concentrations and used to evaluate their performance in gas separation for oxygen enrichment. The surface-coated membranes were characterized using SEM and EDX to determine the coating layer thickness and surface chemical properties, respectively. Results from the gas permeation study revealed that the PSF membrane coated with PDMS offered higher permeance and selectivity compared to the membrane coated with PEBAX. The best performing PDMS-coated membrane demonstrated oxygen and nitrogen gas permeance of 18.31 and 4.01 GPU, respectively with oxygen/nitrogen selectivity of 4.56. Meanwhile, the PEBAX-coated membrane only showed 12.23 and 3.11 GPU for oxygen and nitrogen gas, respectively with a selectivity of 3.94. It can be concluded the PDMS coating is more promising for PSF hollow fiber membrane compared to the PEBAX coating for the oxygen enrichment process.
  6. Wang Y, Li C, Zhao S, Wei Y, Li K, Jiang X, et al.
    PLoS Negl Trop Dis, 2024 Apr;18(4):e0012158.
    PMID: 38683870 DOI: 10.1371/journal.pntd.0012158
    Vector-borne infectious disease such as dengue fever (DF) has spread rapidly due to more suitable living environments. Considering the limited studies investigating the disease spread under climate change in South and Southeast Asia, this study aimed to project the DF transmission potential in 30 locations across four South and Southeast Asian countries. In this study, weekly DF incidence data, daily mean temperature, and rainfall data in 30 locations in Singapore, Sri Lanka, Malaysia, and Thailand from 2012 to 2020 were collected. The effects of temperature and rainfall on the time-varying reproduction number (Rt) of DF transmission were examined using generalized additive models. Projections of location-specific Rt from 2030s to 2090s were determined using projected temperature and rainfall under three Shared Socioeconomic Pathways (SSP126, SSP245, and SSP585), and the peak DF transmissibility and epidemic duration in the future were estimated. According to the results, the projected changes in the peak Rt and epidemic duration varied across locations, and the most significant change was observed under middle-to-high greenhouse gas emission scenarios. Under SSP585, the country-specific peak Rt was projected to decrease from 1.63 (95% confidence interval: 1.39-1.91), 2.60 (1.89-3.57), and 1.41 (1.22-1.64) in 2030s to 1.22 (0.98-1.51), 2.09 (1.26-3.47), and 1.37 (0.83-2.27) in 2090s in Singapore, Thailand, and Malaysia, respectively. Yet, the peak Rt in Sri Lanka changed slightly from 2030s to 2090s under SSP585. The epidemic duration in Singapore and Malaysia was projected to decline under SSP585. In conclusion, the change of peak DF transmission potential and disease outbreak duration would vary across locations, particularly under middle-to-high greenhouse gas emission scenarios. Interventions should be considered to slow down global warming as well as the potential increase in DF transmissibility in some locations of South and Southeast Asia.
  7. Yeoh EK, Chong KC, Chiew CJ, Lee VJ, Ng CW, Hashimoto H, et al.
    One Health, 2021 Jun;12:100213.
    PMID: 33506086 DOI: 10.1016/j.onehlt.2021.100213
    While most countries in the Western Pacific Region (WPR) had similar trajectories of COVID-19 from January to May, their implementations of non-pharmaceutical interventions (NPIs) differed by transmission stages. To offer a better understanding for an implementation of multidisciplinary policies in COVID-19 control, we compared the impact of NPIs by assessing the transmissibility and severity of COVID-19 in different phases of the epidemic during the first five months in WPR. In this study, we estimated the piecewise instantaneous reproduction number (R
    t
    ) and the reporting delay-adjusted case-fatality ratio (dCFR) of COVID-19 in seven WPR jurisdictions: Hong Kong Special Administrative Region, Japan, Malaysia, Shanghai, Singapore, South Korea, and Taiwan. According to the results, implementing NPIs was associated with an apparent reduction of the piecewise R
    t
    in two epidemic waves in general. However, large cluster outbreaks raised the piecewise R
    t
    to a high level. We also observed relaxing the NPIs could result in an increase of R
    t
    . The estimated dCFR ranged from 0.09% to 1.59% among the jurisdictions, except in Japan where an estimate of 5.31% might be due to low testing efforts. To conclude, in conjunction with border control measures to reduce influx of imported cases which might cause local outbreaks, other NPIs including social distancing measures along with case finding by rapid tests are also necessary to prevent potential large cluster outbreaks and transmissions from undetected cases. A comparatively lower CFR may reflect the health system capacity of these jurisdictions. In order to keep track of sustained disease transmission due to resumption of economic activities, a close monitoring of disease transmissibility is recommended in the relaxation phase. The report of transmission of SARS CoV-2 to pets in Hong Kong and to mink in farm outbreaks highlight for the control of COVID-19 and emerging infectious disease, the One Health approach is critical in understanding and accounting for how human, animals and environment health are intricately connected.
  8. Wang Y, Zhao S, Wei Y, Li K, Jiang X, Li C, et al.
    Infect Dis Model, 2023 Sep;8(3):645-655.
    PMID: 37440763 DOI: 10.1016/j.idm.2023.05.008
    The potential for dengue fever epidemic due to climate change remains uncertain in tropical areas. This study aims to assess the impact of climate change on dengue fever transmission in four South and Southeast Asian settings. We collected weekly data of dengue fever incidence, daily mean temperature and rainfall from 2012 to 2020 in Singapore, Colombo, Selangor, and Chiang Mai. Projections for temperature and rainfall were drawn for three Shared Socioeconomic Pathways (SSP126, SSP245, and SSP585) scenarios. Using a disease transmission model, we projected the dengue fever epidemics until 2090s and determined the changes in annual peak incidence, peak time, epidemic size, and outbreak duration. A total of 684,639 dengue fever cases were reported in the four locations between 2012 and 2020. The projected change in dengue fever transmission would be most significant under the SSP585 scenario. In comparison to the 2030s, the peak incidence would rise by 1.29 times in Singapore, 2.25 times in Colombo, 1.36 times in Selangor, and >10 times in Chiang Mai in the 2090s under SSP585. Additionally, the peak time was projected to be earlier in Singapore, Colombo, and Selangor, but be later in Chiang Mai under the SSP585 scenario. Even in a milder emission scenario of SSP126, the epidemic size was projected to increase by 5.94%, 10.81%, 12.95%, and 69.60% from the 2030s-2090s in Singapore, Colombo, Selangor, and Chiang Mai, respectively. The outbreak durations in the four settings were projected to be prolonged over this century under SSP126 and SSP245, while a slight decrease is expected in 2090s under SSP585. The results indicate that climate change is expected to increase the risk of dengue fever transmission in tropical areas of South and Southeast Asia. Limiting greenhouse gas emissions could be crucial in reducing the transmission of dengue fever in the future.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links