Displaying all 2 publications

Abstract:
Sort:
  1. Wang WC, Lin TY, Chiu SY, Chen CN, Sarakarn P, Ibrahim M, et al.
    J Formos Med Assoc, 2021 Jun;120 Suppl 1:S26-S37.
    PMID: 34083090 DOI: 10.1016/j.jfma.2021.05.010
    BACKGROUND: As Coronavirus disease 2019 (COVID-19) pandemic led to the unprecedent large-scale repeated surges of epidemics worldwide since the end of 2019, data-driven analysis to look into the duration and case load of each episode of outbreak worldwide has been motivated.

    METHODS: Using open data repository with daily infected, recovered and death cases in the period between March 2020 and April 2021, a descriptive analysis was performed. The susceptible-exposed-infected-recovery model was used to estimate the effective productive number (Rt). The duration taken from Rt > 1 to Rt 

  2. Chen TH, Yen AM, Fann JC, Gordon P, Chen SL, Chiu SY, et al.
    Medicine (Baltimore), 2017 Jan;96(3):e5684.
    PMID: 28099330 DOI: 10.1097/MD.0000000000005684
    BACKGROUND: The recent controversy about using mammography to screen for breast cancer based on randomized controlled trials over 3 decades in Western countries has not only eclipsed the paradigm of evidence-based medicine, but also puts health decision-makers in countries where breast cancer screening is still being considered in a dilemma to adopt or abandon such a well-established screening modality.

    METHODS: We reanalyzed the empirical data from the Health Insurance Plan trial in 1963 to the UK age trial in 1991 and their follow-up data published until 2015. We first performed Bayesian conjugated meta-analyses on the heterogeneity of attendance rate, sensitivity, and over-detection and their impacts on advanced stage breast cancer and death from breast cancer across trials using Bayesian Poisson fixed- and random-effect regression model. Bayesian meta-analysis of causal model was then developed to assess a cascade of causal relationships regarding the impact of both attendance and sensitivity on 2 main outcomes.

    RESULTS: The causes of heterogeneity responsible for the disparities across the trials were clearly manifested in 3 components. The attendance rate ranged from 61.3% to 90.4%. The sensitivity estimates show substantial variation from 57.26% to 87.97% but improved with time from 64% in 1963 to 82% in 1980 when Bayesian conjugated meta-analysis was conducted in chronological order. The percentage of over-detection shows a wide range from 0% to 28%, adjusting for long lead-time. The impacts of the attendance rate and sensitivity on the 2 main outcomes were statistically significant. Causal inference made by linking these causal relationships with emphasis on the heterogeneity of the attendance rate and sensitivity accounted for the variation in the reduction of advanced breast cancer (none-30%) and of mortality (none-31%). We estimated a 33% (95% CI: 24-42%) and 13% (95% CI: 6-20%) breast cancer mortality reduction for the best scenario (90% attendance rate and 95% sensitivity) and the poor scenario (30% attendance rate and 55% sensitivity), respectively.

    CONCLUSION: Elucidating the scenarios from high to low performance and learning from the experiences of these trials helps screening policy-makers contemplate on how to avoid errors made in ineffective studies and emulate the effective studies to save women lives.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links