Displaying all 5 publications

Abstract:
Sort:
  1. Chiu HI, Lim V
    Int J Nanomedicine, 2021;16:2995-3020.
    PMID: 33911862 DOI: 10.2147/IJN.S302238
    PURPOSE: In chemotherapy, oral administration of drug is limited due to lack of drug specificity for localized colon cancer cells. The inability of drugs to differentiate cancer cells from normal cells induces side effects. Colonic targeting with polymeric nanoparticulate drug delivery offers high potential strategies for delivering hydrophobic drugs and fewer side effects to the target site. Disulfide cross-linked polymers have recently acquired high significance due to their potential to degrade in reducing colon conditions while resisting the upper gastrointestinal tract's hostile environment. The goal of this project is, therefore, to develop pH-sensitive and redox-responsive fluorescein-labeled wheat germ agglutinin (fWGA)-mounted disulfide cross-linked alginate nanoparticles (fDTP2) directly targeting docetaxel (DTX) in colon cancer cells.

    METHODS: fDTP2 was prepared by mounting fWGA on DTX-loaded nanoparticles (DTP2) using the two-step carbodiimide method. Morphology of fDTP2 was examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Dynamic light scattering (DLS) study was carried out to determine the mean diameter, polydispersity index (PDI) and zeta potential of fDTP2. Cellular uptake efficiency was examined using fluorescence microplate reader. Biocompatibility and active internalization of fDTP2 were conducted on HT-29.

    RESULTS: fDTP2 was found to exhibit a DTX loading efficiency of 19.3%. SEM and TEM tests revealed spherical nanoparticles. The in vitro DTX release test showed a cumulative release of 54.7%. From the DLS study, fDTP2 reported a 277.7 nm mean diameter with PDI below 0.35 and -1.0 mV zeta potential. HT-29 which was fDTP2-treated demonstrated lower viability than L929 with a half maximal inhibitory concentration (IC50) of 34.7 µg/mL. HT-29 (33.4%) internalized fDTP2 efficiently at 2 h incubation. The study on HT-29 active internalization of nanoparticles through fluorescence and confocal imaging indicated such.

    CONCLUSION: In short, fDTP2 demonstrated promise as a colonic drug delivery DTX transporter.

  2. Chiu HI, Samad NA, Fang L, Lim V
    RSC Adv, 2021 Mar 01;11(16):9433-9449.
    PMID: 35423427 DOI: 10.1039/d1ra00074h
    Recent advances in nanotechnology have contributed tremendously to the development and revolutionizing of drug delivery systems in the field of nanomedicine. In particular, targeting nanoparticles based on biodegradable poly(lactic-co-glycolic acid) (PLGA) polymers have gained much interest. However, PLGA nanoparticles remain of concern for their effectiveness against cancer cells and their toxicity to normal cells. The aim of this systematic review is to identify a promising targeting PLGA nanoformulation based on the comparison study of their cytotoxicity potency in different cell lines. A literature search was conducted through the databases of Google Scholar, PubMed, ScienceDirect, Scopus and SpringerLink. The sources studied were published between 2009 and 2019, and a variety of keywords were utilized. In total, 81 manuscripts that met the inclusion and exclusion criteria were selected for analysis based on their cytotoxicity, size, zeta potential, year of publication, type of ligand, active compounds and cell line used. The half maximal inhibitory concentration (IC50) for cytotoxicity was the main measurement in this data extraction, and the SI units were standardized to μg mL-1 for a better view of comparison. This systematic review also identified that cytotoxicity potency was inversely proportional to nanoparticle size. The PLGA nanoparticles predominantly exhibited a size of less than 300 nm and absolute zeta potential ∼20 mV. In conclusion, more comprehensive and critical appraisals of pharmacokinetic, pharmacokinetic, toxicokinetic, in vivo and in vitro tests are required for the investigation of the full value of targeting PLGA nanoparticles for cancer treatment.
  3. Ayub AD, Chiu HI, Mat Yusuf SNA, Abd Kadir E, Ngalim SH, Lim V
    Artif Cells Nanomed Biotechnol, 2019 Dec;47(1):353-369.
    PMID: 30691309 DOI: 10.1080/21691401.2018.1557672
    The application of layer-by-layer (LbL) approach on nanoparticle surface coating improves the colon-specific drug delivery of insoluble drugs. Here, we aimed to formulate a self-assembled cysteamine-based disulphide cross-linked sodium alginate with LbL self-assembly to improve the delivery of paclitaxel (PCX) to colonic cancer cells. Cysteamine was conjugated to the backbone of oxidized SA to form a core of self-assembled disulphide cross-linked nanospheres. P3DL was selected for PCX loading and fabricated LbL with poly(allylamine hydrochloride) (PAH) and poly(4-styrenesulfonic acid-co-maleic acid) sodium salt (PSSCMA) resulting from characterization and drug release studies. P3DL-fabricated PCX-loaded nanospheres (P3DL/PAH/PSSCMA) exhibited an encapsulation efficiency of 77.1% with cumulative drug release of 45.1%. Dynamic light scattering analysis was reported at 173.6 ± 2.5 nm with polydispersity index of 0.394 ± 0.105 (zeta potential= -58.5 mV). P3DL/PAH/PSSCMA demonstrated a pH-dependent swelling transition; from pH 1 to 7 (102.2% increase). The size increased by 33.0% in reduction response study after incubating with 10 mM glutathione (day 7). HT-29 cells showed high viabilities (86.7%) after treatment with the fabricated nanospheres at 0.8 µg/mL. Cellular internalization was successful with more than 70.0% nanospheres detected in HT-29 cells. Therefore, this fabricated nanospheres may be considered as potential nanocarriers for colon cancer-targeted chemotherapeutic drug delivery.
  4. Hanan NA, Chiu HI, Ramachandran MR, Tung WH, Mohamad Zain NN, Yahaya N, et al.
    Int J Mol Sci, 2018 Jun 11;19(6).
    PMID: 29891772 DOI: 10.3390/ijms19061725
    In the field of medicine, nanomaterials, especially those derived using the green method, offer promise as anti-cancer agents and drug carriers. However, the biosafety of metallic nanoparticles used as anti-cancer agents remains a concern. The goal of this systematic review was to compare the cytotoxicity of different plant-mediated syntheses of metallic nanoparticles based on their potency, therapeutic index, and cancer cell type susceptibility in the hopes of identifying the most promising anti-cancer agents. A literature search of electronic databases including Science Direct, PubMed, Springer Link, Google Scholar, and ResearchGate, was conducted to obtain research articles. Keywords such as biosynthesis, plant synthesis, plant-mediated, metallic nanoparticle, cytotoxicity, and anticancer were used in the literature search. All types of research materials that met the inclusion criteria were included in the study regardless of whether the results were positive, negative, or null. The therapeutic index was used as a safety measure for the studied compound of interest. Data from 76 selected articles were extracted and synthesised. Seventy-two studies reported that the cytotoxicity of plant-mediated synthesis of metallic nanoparticles was time and/or dose-dependent. Biosynthesised silver nanoparticles demonstrated higher cytotoxicity potency compared to gold nanoparticles synthesised by the same plants (Plumbago zeylanica, Commelina nudiflora, and Cassia auriculata) irrespective of the cancer cell type tested. This review also identified a correlation between the nanoparticle size and morphology with the potency of cytotoxicity. Cytotoxicity was found to be inversely proportional to nanoparticle size. The plant-mediated syntheses of metallic nanoparticles were predominantly spherical or quasi-spherical, with the median lethal dose of 1⁻20 µg/mL. Nanoparticles with other shapes (triangular, hexagonal, and rods) were less potent. Metallic nanoparticles synthesised by Abutilon inducum, Butea monosperma, Gossypium hirsutum, Indoneesiella echioides, and Melia azedarach were acceptably safe as anti-cancer agents, as they had a therapeutic index of >2.0 when tested on both cancer cells and normal human cells. Most plant-mediated syntheses of metallic nanoparticles were found to be cytotoxic, although some were non-cytotoxic. The results from this study suggest a focus on a selected list of potential anti-cancer agents for further investigations of their pharmacodynamic/toxicodynamic and pharmacokinetic/toxicokinetic actions with the goal of reducing the Global Burden of Diseases and the second leading cause of mortality.
  5. Chiu HI, Che Mood CNA, Mohamad Zain NN, Ramachandran MR, Yahaya N, Nik Mohamed Kamal NNS, et al.
    Bioinorg Chem Appl, 2021;2021:9920890.
    PMID: 34093698 DOI: 10.1155/2021/9920890
    Silver nanoparticles (AgNPs) previously synthesised using leaf (AgNP-L) and stem (AgNP-S) extracts of Clinacanthus nutans (C. nutans) were tested to evaluate antimicrobial, antioxidant, and cytotoxicity activities. The AgNPs showed good inhibition against bacteria, but not fungi. The inhibition results showed the highest activity against Staphylococcus aureus (S. aureus) with 11.35 mm (AgNP-L) and 11.52 mm (AgNP-S), while the lowest inhibition was against Escherichia coli (E. coli) with 9.22 mm (AgNP-L) and 9.25 mm (AgNP-S) in the disc diffusion method. The same trend of results was noted in the well diffusion method. The IC50 of AgNP-L and AgNP-S in 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays was 417.05 μg/mL and 434.60 μg/mL, as well as 304.31 μg/mL and 326.83 μg/mL, respectively. Ferric reducing power (FRAP) assay showed that AgNP-L [872.389 μmol/L Fe(II)] and AgNP-S [612.770 μmol/L Fe(II)] exhibited significantly (p 
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links