Displaying all 2 publications

Abstract:
Sort:
  1. Wang M, Chittiboyina AG, Parcher JF, Ali Z, Ford P, Zhao J, et al.
    Planta Med, 2019 Feb;85(3):185-194.
    PMID: 30440078 DOI: 10.1055/a-0782-0548
    The growing demand and commercial value of black pepper (Piper nigrum) has resulted in considerable interest in developing suitable and cost-effective methods for chemical characterization and quality evaluation purposes. In the current study, an extensive set of oil samples (n = 23) that were extracted by steam distillation from black pepper seeds was investigated to compare the chemical profiles of samples originating from nine major producing countries, as well as to identify potential chemical markers for quality evaluation. The twenty-two most abundant volatile compounds, mainly terpenes, in these oils were determined by conventional GC/MS analysis. Principal component analysis with this set of data revealed distinct clusters for samples that originated from China and Malaysia. Relatively low concentrations of sabinene (
  2. Xiong J, Zhou PJ, Jiang HW, Huang T, He YH, Zhao ZY, et al.
    Angew Chem Int Ed Engl, 2021 Oct 04;60(41):22270-22275.
    PMID: 34374477 DOI: 10.1002/anie.202109082
    Forrestiacids A (1) and B (2) are a novel class of [4+2] type pentaterpenoids derived from a rearranged lanostane moiety (dienophile) and an abietane unit (diene). These unprecedented molecules were isolated using guidance by molecular ion networking (MoIN) from Pseudotsuga forrestii, an endangered member of the Asian Douglas Fir Family. The intermolecular hetero-Diels-Alder adducts feature an unusual bicyclo[2.2.2]octene ring system. Their structures were elucidated by spectroscopic analysis, GIAO NMR calculations and DP4+ probability analyses, electronic circular dichroism calculations, and X-ray diffraction analysis. This unique addition to the pentaterpene family represents the largest and the most complex molecule successfully assigned using computational approaches to predict accurately chemical shift values. Compounds 1 and 2 exhibited potent inhibitory activities (IC50 s <5 μM) of ATP-citrate lyase (ACL), a new drug target for the treatment of glycolipid metabolic disorders including hyperlipidemia. Validating this activity 1 effectively attenuated the de novo lipogenesis in HepG2 cells. These findings provide a new chemical class for developing potential therapeutic agents for ACL-related diseases with strong links to traditional medicines.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links