Displaying all 2 publications

Abstract:
Sort:
  1. Chin CFS, Furuya Y, Zainudin MHM, Ramli N, Hassan MA, Tashiro Y, et al.
    J Biosci Bioeng, 2017 Nov;124(5):506-513.
    PMID: 28736147 DOI: 10.1016/j.jbiosc.2017.05.016
    Previously, a unique co-compost produced by composting empty fruit bunch with anaerobic sludge from palm oil mill effluent, which contributed to establishing a zero-emission industry in Malaysia. Little was known about the bacterial functions during the composting process and fertilization capacity of this co-compost. We isolated 100 strains from the co-compost on 7 types of enumeration media and screened 25 strains using in vitro tests for 12 traits, grouping them according to three functions: plant growth promoting (fixation of nitrogen; solubilization of phosphorus, potassium, and silicate; production of 3-indoleacetic acid, ammonia, and siderophore), biocontrolling (production of chitinase and anti-Ganoderma activity), and composting (degradation of lignin, xylan, and cellulose). Using 16S rRNA gene sequence analysis, 25 strains with strong or multi-functional traits were found belong to the genera Bacillus, Paenibacillus, Citrobacter, Enterobacter, and Kosakonia. Furthermore, several strains of Citrobacter sedlakii exhibited a plant growth-stimulation in vivo komatsuna plant cultivation test. In addition, we isolated several multifunctional strains; Bacillus tequilensis CE4 (biocontrolling and composting), Enterobacter cloacae subsp. dissolvens B3 (plant growth promoting and biocontrolling), and C. sedlakii CESi7 (plant growth promoting and composting). Some bacteria in the co-compost play significant roles during the composting process and plant cultivation after fertilization, and some multifunctional strains have potential for use in accelerating the biodegradation of lignocellulosic biomass, protecting against Ganoderma boninense infection, and increasing the yield of palm oil.
  2. Darlis D, Jalloh MB, Chin CFS, Basri NKM, Besar NA, Ahmad K, et al.
    Sci Rep, 2023 Jun 26;13(1):10316.
    PMID: 37365214 DOI: 10.1038/s41598-023-37507-0
    Basal stem rot due to a fungal pathogen, Ganoderma boninense, is one of the most devastating diseases in oil palm throughout the major palm oil producer countries. This study investigated the potential of polypore fungi as biological control agents against pathogenic G. boninense in oil palm. In vitro antagonistic screening of selected non-pathogenic polypore fungi was performed. Based on in planta fungi inoculation on oil palm seedlings, eight of the 21 fungi isolates tested (GL01, GL01, RDC06, RDC24, SRP11, SRP12, SRP17, and SRP18) were non-pathogenic. In vitro antagonistic assays against G. boninense revealed that the percentage inhibition of radial growth (PIRG) in dual culture assay for SRP11 (69.7%), SRP17 (67.3%), and SRP18 (72.7%) was relatively high. Percentage inhibition of diameter growth (PIDG) in volatile organic compounds (VOCs) in dual plate assay of SRP11, SRP17, and SRP18 isolates were 43.2%, 51.6%, and 52.1%, respectively. Molecular identification using the internal transcribed spacer gene sequences of SRP11, SRP17, and SRP18 isolates revealed that they were Fomes sp., Trametes elegans, and Trametes lactinea, respectively.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links