MATERIALS AND METHODS: The oral toxicity study using Swiss albino mice was performed in accordance with OECD guidelines. The EtAI and AqAI extracts of Aristolochia indica Linn were studied for antidiarrhoeal property using castor oil-induced diarrhoeal model and charcoal-induced gastrointestinal motility test in Swiss albino mice.
RESULTS: Among the tested doses of 200 and 400 mg/kg body weight, the extracts reduced the frequency and severity of diarrhoea in test animals throughout the study period. At the same doses, the extract delayed the intestinal transit of charcoal meal in test animals as compared to the control and the results were statistically significant.
CONCLUSION: Experimental findings showed that ethanol extract of Aristolochia indica Linn root possess significant antidiarrheal activity and may be a potent source of anti-diarrhoeal drug in future.
PURPOSE: This work aimed to develop and characterize chitosan (CS)-polyvinyl alcohol (PVA) blended electrospun multifunctional nanofiber loaded with curcumin (CUR) and zinc oxide (ZnO) to accelerate diabetic wound healing in STZ-induced diabetic rats.
RESULTS: In-vitro characterization results revealed that nanofiber was fabricated successfully using the electrospinning technique. SEM results confirmed the smooth surface with web-like fiber nanostructure diameter ranging from 200 - 250 nm. An in-vitro release study confirmed the sustained release of CUR and ZnO for a prolonged time. In-vitro cell-line studies demonstrated significantly low cytotoxicity of nanofiber in HaCaT cells. Anti-bacterial studies demonstrated good anti-bacterial and anti-biofilm activities of nanofiber. In-vivo animal studies demonstrated an excellent wound-healing efficiency of the nanofibers in STZ-induced diabetic rats. Furthermore, the ELISA assay revealed that the optimized nanofiber membrane terminated the inflammatory phases successfully by downregulating the pro-inflammatory cytokines (TNF-α, MMP-2, and MMP-9) in wound healing. In-vitro and in-vivo studies conclude that the developed nanofiber loaded with bioactive material can promote diabetic wound healing efficiently via multifunction action such as the sustained release of bioactive molecules for a prolonged time of duration, proving anti-bacterial/anti-biofilm properties and acceleration of cell migration and proliferation process during the wound healing.
DISCUSSION: CUR-ZnO electrospun nanofibers could be a promising drug delivery platform with the potential to be scaled up to treat diabetic foot ulcers effectively.