Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Cheng A
    Plant Sci, 2018 Apr;269:136-142.
    PMID: 29606211 DOI: 10.1016/j.plantsci.2018.01.018
    Genetic erosion of crops has been determined way back in the 1940s and accelerated some twenty years later by the inception of the Green Revolution. Claims that the revolution was a complete triumph remain specious, especially since the massive production boost in the global big three grain crops; wheat, maize, and rice that happened back then is unlikely to recur under current climate irregularities. Presently, one of the leading strategies for sustainable agriculture is by unlocking the genetic potential of underutilized crops. The primary focus has been on a suite of ancient cereals and pseudo-cereals which are riding on the gluten-free trend, including, among others, grain amaranth, buckwheat, quinoa, teff, and millets. Each of these crops has demonstrated tolerance to various stress factors such as drought and heat. Apart from being the centuries-old staple in their native homes, these crops have also been traditionally used as forage for livestock. This review summarizes what lies in the past and present for these underutilized cereals, particularly concerning their potential role and significance in a rapidly changing world, and provides compelling insights into how they could one day be on par with the current big three in feeding a booming population.
  2. Cheng A, Ismail I, Osman M, Hashim H
    Int J Mol Sci, 2012;13(5):6156-66.
    PMID: 22754356 DOI: 10.3390/ijms13056156
    The polymorphisms of Waxy (Wx) microsatellite and G-T single-nucleotide polymorphism (SNP) in the Wx gene region were analyzed using simplified techniques in fifteen rice varieties. A rapid and reliable electrophoresis method, MetaPhor agarose gel electrophoresis (MAGE), was effectively employed as an alternative to polyacrylamide gel electrophoresis (PAGE) for separating Wx microsatellite alleles. The amplified products containing the Wx microsatellite ranged from 100 to 130 bp in length. Five Wx microsatellite alleles, namely (CT)(10), (CT)(11), (CT)(16), (CT)(17), and (CT)(18) were identified. Of these, (CT)(11) and (CT)(17) were the predominant classes among the tested varieties. All varieties with an apparent amylose content higher than 24% were associated with the shorter repeat alleles; (CT)(10) and (CT)(11), while varieties with 24% or less amylose were associated with the longer repeat alleles. All varieties with intermediate and high amylose content had the sequence AGGTATA at the 5'-leader intron splice site, while varieties with low amylose content had the sequence AGTTATA. The G-T polymorphism was further verified by the PCR-AccI cleaved amplified polymorphic sequence (CAPS) method, in which only genotypes containing the AGGTATA sequence were cleaved by AccI. Hence, varieties with desirable amylose levels can be developed rapidly using the Wx microsatellite and G-T SNP, along with MAGE.
  3. Massawe F, Mayes S, Cheng A
    Trends Plant Sci, 2016 05;21(5):365-368.
    PMID: 27131298 DOI: 10.1016/j.tplants.2016.02.006
    The prediction is that food supply must double by 2050 to cope with the impact of climate change and population pressure on global food systems. The diversification of staple crops and the systems in which they grow is essential to make future agriculture sustainable, resilient, and suitable for local environments and soils.
  4. Cheng A, Leung Y, Brodaty H
    Aging Ment Health, 2022 Apr;26(4):651-666.
    PMID: 33645362 DOI: 10.1080/13607863.2021.1891197
    OBJECTIVE: Results from studies investigating life satisfaction, positive affect and happiness of near-centenarians (95+) and centenarians are inconsistent. This is the first systematic review to summarise the extant literature on the subjective well-being of this unique age group.

    METHOD: Seven electronic databases (PubMed, MEDLINE, EMBASE, PsycINFO, CINAHL, Web of Science and the Cochrane database for systematic reviews) were systematically searched. Subjective well-being was defined as life satisfaction, positive affect and happiness. A narrative synthesis of relevant articles was undertaken.

    RESULTS: Of 28 studies eligible for inclusion in this review, 20 predominantly examined life satisfaction, 11 positive affect and 4 happiness. Sex and other demographic variables were not significant predictors of subjective well-being. In contrast, greater perceived health was significantly associated with higher levels of life satisfaction and positive affect. Fatigue and visual impairment were significantly correlated with lower levels of life satisfaction and positive affect. However, there was considerable heterogeneity in the findings on physical, cognitive and social associations, mediators and moderators.

    CONCLUSION: The large discrepancy of results in the literature may be explained by methodological differences between studies. Centenarian research needs a clearer definition of life satisfaction, positive affect and happiness as their operationalisation is inconsistent. An international consortium of centenarian studies could facilitate cross-cultural comparisons on subjective well-being. Future research should be directed towards interventions that promote subjective well-being in the oldest-old.

  5. Ai DD, Sui BY, Duan CA, Xu Q, Zhao K
    Int J Technol Assess Health Care, 2024 Apr 05;40(1):e24.
    PMID: 38577775 DOI: 10.1017/S0266462324000151
    BACKGROUND: Traditional therapies are crucial in maintaining and improving human well-being. China's healthcare policymakers are attempting to use health technology assessment (HTA) as a decision-making supportive tool. The value assessment framework for Chinese patent medicine (CPM) has been developed and is being adopted and validated widely by research institutions. Subsequently, the healthcare decision-makers particularly hanker for the value framework of traditional non-pharmacological therapies.

    METHODS: To construct a practical value framework for traditional non-pharmacological therapies, a scoping review methodology was adopted to identify the evaluation domains and obstacles. A search, screening, and analysis process was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). Evidence was retrieved from scientific databases and HTA agencies' websites.

    RESULTS: The search strategy identified 5 guidelines records and 17 acupuncture HTA reports. By synthesizing the valuable reports of CPM and acupuncture evaluation in representative countries, this study found that Mainland China was promoting the comprehensive value assessment of CPM, whereas the United Kingdom, Singapore, Canada, the United States, and Malaysia had carried out the HTA evaluation of acupuncture for various conditions among which chronic pain was the most common. UK and Singapore applied the HTA results to support acupuncture reimbursement decisions. Three domains, including safety, effectiveness, and economy, were commonly adopted. The identified biggest challenge of evaluating traditional non-pharmacological therapies is the scarce high-quality clinical evidence.

    CONCLUSIONS: This study identified value domains and issues of traditional therapies, and pointed out future research implications, to promote the development value framework of traditional therapies.

  6. Cheng A, Mayes S, Dalle G, Demissew S, Massawe F
    Biol Rev Camb Philos Soc, 2017 Feb;92(1):188-198.
    PMID: 26456883 DOI: 10.1111/brv.12225
    There are more than 50000 known edible plants in the world, yet two-thirds of global plant-derived food is provided by only three major cereals - maize (Zea mays), wheat (Triticum aestivum) and rice (Oryza sativa). The dominance of this triad, now considered truly global food commodities, has led to a decline in the number of crop species contributing to global food supplies. Our dependence on only a few crop species limits our capability to deal with challenges posed by the adverse effects of climate change and the consequences of dietary imbalance. Emerging evidence suggests that climate change will cause shifts in crop production and yield loss due to more unpredictable and hostile weather patterns. One solution to this problem is through the wider use of underutilised (also called orphan or minor) crops to diversify agricultural systems and food sources. In addition to being highly nutritious, underutilised crops are resilient in natural and agricultural conditions, making them a suitable surrogate to the major crops. One such crop is teff [Eragrostis tef (Zucc.) Trotter], a warm-season annual cereal with the tiniest grain in the world. Native to Ethiopia and often the sustenance for local small farmers, teff thrives in both moisture-stressed and waterlogged soil conditions, making it a dependable staple within and beyond its current centre of origin. Today, teff is deemed a healthy wheat alternative in the West and is sought-after by health aficionados and those with coeliac disease or gluten sensitivity. The blooming market for healthy food is breathing new life into this underutilised crop, which has received relatively limited attention from mainstream research perhaps due to its 'orphan crop' status. This review presents the past, present and future of an ancient grain with a potential beyond its size.
  7. Cheng A, Ismail I, Osman M, Hashim H, Mohd Zainual NS
    Genome, 2017 Dec;60(12):1045-1050.
    PMID: 28813631 DOI: 10.1139/gen-2017-0100
    While it is crucial for developing countries like Malaysia to achieve self-sufficiency in rice (Oryza sativa L.), it is equally critical to be able to produce high-quality rice, specifically fragrant rice, which demands are often met through importation. The present study was aimed at developing high-yielding fragrant rice, in a timely and cost-effective manner. A marker-assisted backcross (MABC) approach was optimised to introgress the fragrance gene (fgr) into two high-yielding Malaysian varieties, MR84 and MR219, within two years utilising less than 50 molecular markers. Coupled with phenotypic screening, one single foreground marker (fgr-SNP) and 48 background markers were selected and utilised, revealing recovery of at least 90% of recurrent parent genome (RPG) in merely two backcross generations. Collectively, the yield potential of the developed BC2F2 lines (BLs) was higher (P > 0.05) than the donor parent, MRQ74, and similar (P < 0.05) to both the recurrent parents, MR84 and MR219. In addition, some of the developed BLs showed good grain quality, such as having long grain. We believe that this is the first report comprising the validation and utilisation of the single functional marker system (fgr-SNP) in introgressing the fgr gene into different rice varieties.
  8. Zhang W, Chen S, Mahalingam S, Wang M, Cheng A
    J Gen Virol, 2017 Oct;98(10):2413-2420.
    PMID: 28874226 DOI: 10.1099/jgv.0.000908
    Tembusu virus (TMUV, genus Flavivirus, family Flaviviridae) was first isolated in 1955 from Culex tritaeniorhynchus mosquitoes in Kuala Lumpur, Malaysia. In April 2010, duck TMUV was first identified as the causative agent of egg-drop syndrome, characterized by a substantial decrease in egg laying and depression, growth retardation and neurological signs or death in infected egg-laying and breeder ducks, in the People's Republic of China. Since 2010, duck TMUV has spread to most of the duck-producing regions in China, including many of the coastal provinces, neighbouring regions and certain Southeast Asia areas (i.e. Thailand and Malaysia). This review describes the current understanding of the genome characteristics, host range, transmission, epidemiology, phylogenetic and immune evasion of avian-origin TMUV and the innate immune response of the host.
  9. Cheng A, Sadali NM, Rejab NA, Uludag A
    Planta, 2024 Jun 03;260(1):14.
    PMID: 38829418 DOI: 10.1007/s00425-024-04449-4
    Significant past, present, and potential future research into the organellar (plastid and mitochondrial) genomes of gymnosperms that can provide insight into the unknown origin and evolution of plants is highlighted. Gymnosperms are vascular seed plants that predominated the ancient world before their sister clade, angiosperms, took over during the Late Cretaceous. The divergence of gymnosperms and angiosperms took place around 300 Mya, with the latter evolving into the diverse group of flowering plants that dominate the plant kingdom today. Although gymnosperms have reportedly made some evolutionary innovations, the literature on their genome advances, particularly their organellar (plastid and mitochondrial) genomes, is relatively scattered and fragmented. While organellar genomes can shed light on plant origin and evolution, they are frequently overlooked, due in part to their limited contribution to gene expression and lack of evolutionary dynamics when compared to nuclear genomes. A better understanding of gymnosperm organellar genomes is critical because they reveal genetic changes that have contributed to their unique adaptations and ecological success, potentially aiding in plant survival, enhancement, and biodiversity conservation in the face of climate change. This review reveals significant information and gaps in the existing knowledge base of organellar genomes in gymnosperms, as well as the challenges and research needed to unravel their complexity.
  10. Noor Azmi NS, Ng YM, Masud MM, Cheng A
    Heliyon, 2024 Jun 30;10(12):e33365.
    PMID: 39021900 DOI: 10.1016/j.heliyon.2024.e33365
    Adopting agroecological approaches to build resilient urban food systems has recently gained traction around the world, but there is little to no reliable literature on the knowledge, attitudes, and perspectives of urban farmers towards these nature-based solutions in many developing nations, including Malaysia. The present study conducted an online survey to determine the extent to which local urban farmers understand and employ agroecology, as well as to assess their awareness and views on using agroecological practices and sustainable farm management. We found that the majority of respondents are unfamiliar with agroecological principles, with 79 % agreeing or strongly agreeing that implementing sustainable agricultural practices is challenging. However, more than 90 % of respondents are aware of the environmental consequences of excessive input utilisation. Our findings highlight the need for improved initiatives to promote agroecological approaches among farmers by sharing knowledge and best practices. In light of the growing threat posed by urban heat islands and the rapid urbanisation, this study offers novel insights into the knowledge gaps and perceptions about agroecological approaches among urban farmers, challenges that must be addressed to promote sustainable agriculture, and the potential role of farmers in achieving the three fundamental pillars of sustainability-planet, people, and prosperity.
  11. Sahruzaini NA, Rejab NA, Harikrishna JA, Khairul Ikram NK, Ismail I, Kugan HM, et al.
    Front Plant Sci, 2020;11:531.
    PMID: 32431724 DOI: 10.3389/fpls.2020.00531
    The last decade has witnessed dramatic changes in global food consumption patterns mainly because of population growth and economic development. Food substitutions for healthier eating, such as swapping regular servings of meat for protein-rich crops, is an emerging diet trend that may shape the future of food systems and the environment worldwide. To meet the erratic consumer demand in a rapidly changing world where resources become increasingly scarce due largely to anthropogenic activity, the need to develop crops that benefit both human health and the environment has become urgent. Legumes are often considered to be affordable plant-based sources of dietary proteins. Growing legumes provides significant benefits to cropping systems and the environment because of their natural ability to perform symbiotic nitrogen fixation, which enhances both soil fertility and water-use efficiency. In recent years, the focus in legume research has seen a transition from merely improving economically important species such as soybeans to increasingly turning attention to some promising underutilized species whose genetic resources hold the potential to address global challenges such as food security and climate change. Pulse crops have gained in popularity as an affordable source of food or feed; in fact, the United Nations designated 2016 as the International Year of Pulses, proclaiming their critical role in enhancing global food security. Given that many studies have been conducted on numerous underutilized pulse crops across the world, we provide a systematic review of the related literature to identify gaps and opportunities in pulse crop genetics research. We then discuss plausible strategies for developing and using pulse crops to strengthen food and nutrition security in the face of climate and anthropogenic changes.
  12. Kugan HM, Rejab NA, Sahruzaini NA, Harikrishna JA, Baisakh N, Cheng A
    Int J Mol Sci, 2021 Apr 27;22(9).
    PMID: 33925559 DOI: 10.3390/ijms22094588
    The natural timing devices of organisms, commonly known as biological clocks, are composed of specific complex folding molecules that interact to regulate the circadian rhythms. Circadian rhythms, the changes or processes that follow a 24-h light-dark cycle, while endogenously programmed, are also influenced by environmental factors, especially in sessile organisms such as plants, which can impact ecosystems and crop productivity. Current knowledge of plant clocks emanates primarily from research on Arabidopsis, which identified the main components of the circadian gene regulation network. Nonetheless, there remain critical knowledge gaps related to the molecular components of circadian rhythms in important crop groups, including the nitrogen-fixing legumes. Additionally, little is known about the synergies and trade-offs between environmental factors and circadian rhythm regulation, especially how these interactions fine-tune the physiological adaptations of the current and future crops in a rapidly changing world. This review highlights what is known so far about the circadian rhythms in legumes, which include major as well as potential future pulse crops that are packed with nutrients, particularly protein. Based on existing literature, this review also identifies the knowledge gaps that should be addressed to build a sustainable food future with the reputed "poor man's meat".
  13. Saw SM, Goh PP, Cheng A, Shankar A, Tan DT, Ellwein LB
    Br J Ophthalmol, 2006 Oct;90(10):1230-5.
    PMID: 16809384
    To compare the prevalences of refractive errors in Malay, Chinese and Indian children in Malaysia and Singapore.
  14. Mohd Hanafiah N, Cheng A, Lim PE, Sethuraman G, Mohd Zain NA, Baisakh N, et al.
    Life (Basel), 2022 Oct 04;12(10).
    PMID: 36294977 DOI: 10.3390/life12101542
    While previous research has demonstrated that multiplex polymerase chain reaction (PCR) can be a cost-effective approach to detect various genes in crops, the availability of multiplex assays to simultaneously screen both grain quality and biotic stress resistance traits in rice (Oryza sativa) is limited. In this work, we report six novel multiplex assays that use a universal protocol to detect major rice grain quality (amylose content and fragrance) and biotic stress (blast, sheath blight, and bacterial leaf blight) traits with amplified products consisting of up to four primer pairs that can be analyzed using a standard agarose-based gel electrophoresis system. Recent studies have suggested that weedy rice has novel sources of disease resistance. However, an intensive screening of weedy biotypes has not been reported in Malaysia. Accordingly, we employed one of the developed multiplex assays to screen reported genes or quantitative trait loci (QTLs) associated with blast, sheath blight, and bacterial leaf blight diseases in 100 weedy rice biotypes collected from five local fields, with phenotyping performed to validate the genotyping results. In conclusion, our universal multiplex protocol is effective for the large-scale genotyping of rice genetic resources, and it can be employed in routine molecular laboratories with limited resources.
  15. Loo WT, Chua KO, Mazumdar P, Cheng A, Osman N, Harikrishna JA
    Plants (Basel), 2022 Oct 27;11(21).
    PMID: 36365329 DOI: 10.3390/plants11212875
    Climate change is likely to have severe impacts on food security in the topics as these regions of the world have both the highest human populations and narrower climatic niches, which reduce the diversity of suitable crops. Legume crops are of particular importance to food security, supplying dietary protein for humans both directly and in their use for feed and forage. Other than the rhizobia associated with legumes, soil microbes, in particular arbuscular mycorrhizal fungi (AMF), can mitigate the effects of biotic and abiotic stresses, offering an important complementary measure to protect crop yields. This review presents current knowledge on AMF, highlights their beneficial role, and explores the potential for application of AMF in mitigating abiotic and biotic challenges for tropical legumes. Due to the relatively little study on tropical legume species compared to their temperate growing counterparts, much further research is needed to determine how similar AMF-plant interactions are in tropical legumes, which AMF species are optimal for agricultural deployment and especially to identify anaerobic AMF species that could be used to mitigate flood stress in tropical legume crop farming. These opportunities for research also require international cooperation and support, to realize the promise of tropical legume crops to contribute to future food security.
  16. Wang S, Qiao Z, Li Z, Zhang Y, Cheng A, Zhu B, et al.
    Soft Robot, 2024 Jul 30.
    PMID: 39078729 DOI: 10.1089/soro.2023.0212
    Soft actuators offer numerous potential applications; however, challenges persist in achieving a high driving force and fast response speed. In this work, we present the design, fabrication, and analysis of a soft pneumatic bistable actuator (PBA) mimicking jellyfish subumbrellar muscle motion for waterjet propulsion. Drawing inspiration from the jellyfish jet propulsion and the characteristics of bistable structure, we develop an elastic band stretch prebending PBA with a simple structure, low inflation cost, exceptional driving performance, and stable driving force output. Through a bionic analysis of jellyfish body structure and motion, we integrate the PBA into a jellyfish-like prototype, enabling it to achieve jet propulsion. To enhance the swimming performance, we introduce a skin-like structure for connecting the soft actuator to the jellyfish-like soft robot prototype. This skin-like structure optimizes the fluid dynamics during jet propulsion, resulting in improved efficiency and maneuverability. Our study further analyzes the swimming performance of the jellyfish-like prototype, demonstrating a swimming speed of 3.8 cm/s (0.32 body length/s, BL/s) for the tethered prototype and 4.7 cm/s (0.38 BL/s) for the untethered prototype. Moreover, we showcase the jellyfish-like prototype's notable load-bearing capacity and fast-forward swimming performance compared to other driving methods for underwater biomimetic robots. This work provides valuable insights for the development of highly agile and fast responsive soft robots that imitate the subumbrellar muscle of jellyfish for efficient water-jet propulsion, utilizing skin-like structures to enhance swimming performance.
  17. Azman A, Ng KK, Ng CH, Lee CT, Tnah LH, Zakaria NF, et al.
    Sci Rep, 2020 11 05;10(1):19112.
    PMID: 33154411 DOI: 10.1038/s41598-020-76092-4
    Worldwide, many mangrove species are experiencing significant population declines, including Rhizophora apiculata, which is one of the most widespread and economically important species in tropical Asia. In Malaysia, there has been an alarming decline in R. apiculata populations driven primarily by anthropogenic activities. However, the lack of genetic and demographic information on this species has hampered local efforts to conserve it. To address these gaps, we generated novel genetic information for R. apiculata, based on 1,120 samples collected from 39 natural populations in Peninsular Malaysia. We investigated its genetic diversity and genetic structure with 19 transcriptome and three nuclear microsatellite markers. Our analyses revealed a low genetic diversity (mean He: 0.352) with significant genetic differentiation (FST: 0.315) among populations of R. apiculata. Approximately two-third of the populations showed significant excess of homozygotes, indicating persistent inbreeding which might be due to the decrease in population size or fragmentation. From the cluster analyses, the populations investigated were divided into two distinct clusters, comprising the west and east coasts of Peninsular Malaysia. The western cluster was further divided into two sub-clusters with one of the sub-clusters showing strong admixture pattern that harbours high levels of genetic diversity, thus deserving high priority for conservation.
  18. Singh B, Zhang S, Ching CK, Huang D, Liu YB, Rodriguez DA, et al.
    Pacing Clin Electrophysiol, 2018 12;41(12):1619-1626.
    PMID: 30320410 DOI: 10.1111/pace.13526
    BACKGROUND: Despite available evidence that implantable cardioverter defibrillators (ICDs) reduce all-cause mortality among patients at risk for sudden cardiac death, utilization of ICDs is low especially in developing countries.

    OBJECTIVE: To summarize reasons for ICD or cardiac resynchronization therapy defibrillator implant refusal by patients at risk for sudden cardiac arrest (Improve SCA) in developing countries.

    METHODS: Primary prevention (PP) and secondary prevention (SP) patients from countries where ICD use is low were enrolled. PP patients with additional risk factors (syncope, ejection fraction 

  19. Shin Yee C, Ilham Z, Cheng A, Abd Rahim MH, Hajar-Azhari S, Yuswan MH, et al.
    Heliyon, 2024 Jul 15;10(13):e33147.
    PMID: 39040394 DOI: 10.1016/j.heliyon.2024.e33147
    This study addresses the challenge of enhancing gamma-aminobutyric acid (GABA) content in soy sauce through optimized fermentation condition. Using a multiple starter culture, consisting of Aspergillus oryzae strain NSK, Bacillus cereus strain KBC and Tetragenococcus halophilus strain KBC, the incubation conditions including the percentage of bacterial inoculum (10, 15 and 20 %), pH (3, 5 and 7) and agitation speed (100, 150 and 200 rpm) were optimized through Response Surface Methodology (RSM). Under the optimal conditions (20 % inoculum, pH 7 and stirring at 100 rpm), the multiple starter culture generated 128.69 mg/L of GABA after 7 days and produced 239.08 mg/L of GABA after 4 weeks of fermentation, which is 36 % higher than under non-optimized conditions (153.48 mg/L). Furthermore, sensory analysis revealed high consumer acceptance of the fermented soy sauce than the control (soy sauce without any treatment and additional bacteria) and commercial soy sauce. Consumers indicated that the starter culture offered an improved umami taste and reduced bitter, sour and salty flavours compared to the commercial product. Under optimal fermentation conditions determined by RSM statistical analysis, the multiple starter culture is able to produce high levels of GABA and is more likely to be accepted by consumers. The findings of this research have the potential to impact the food sector by offering a functional soy sauce with added health benefits and also being well-received by consumers.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links