METHODS: The study employed a bidirectional MR analysis with two samples, utilizing a freely accessible genome-wide association study (GWAS). Furthermore, the primary analysis employed the inverse variance weighted (IVW) method. To determine whether the lipid profiles were associated with periodontitis, a variety of sensitivity analyses (including MR-Egger regression, MR-PRESSO, and weighted median), as well as multivariable MR, were employed.
RESULTS: MR analysis performed by IVW did not reveal any relationship between periodontitis and low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides (TG), or total cholesterol (TC). It was also found that LDL, HDL, TG, and TC were not associated to periodontitis. Furthermore, the MR estimations exhibited consistency with other MR sensitivity and multivariate MR (MVMR) analyses. These results show that the correlation between serum lipid levels and periodontitis could not be established.
CONCLUSION: The finding indicates a negligible link between periodontitis and serum lipid levels were identified, despite previous observational studies reporting a link between periodontitis and serum lipid levels.
METHODS: A protein of 58 kd with an isoelectric point of 8.45 was purified from raw latex and from latex gloves and identified as the major allergen, completely blocking specific IgE antibodies in the serum of latex-sensitized subjects. The allergen is a noncovalent homotetramer molecule, in which the 14.6 kd monomer was identified, by amino acid composition and sequence homologies of tryptic peptides, to be the rubber elongation factor found in natural latex of the Malaysian rubber tree.
RESULTS: Competitive immunoinhibition tests showed that the starch powder covering the finished gloves is the airborne carrier of the allergen, resulting in bronchial asthma on inhalation. The purified allergen can induce allergic reactions in the nanogram range.
CONCLUSION: The identification of the allergen (Hev b I) may help to eliminate it during the production of latex-based articles in the future.