OBJECTIVE: In this study, we tested the employment of a free and widely used social and communication app to help older adults with diabetes manage their distress and glycemic control. We also compared the effectiveness of the app with 2 other methods, namely telephone and conventional health education, and determined which subgroup experiences the most effects within each intervention.
METHODS: Adults aged ≥50 years with type 2 diabetes were recruited from Southern Taiwan (N=231) and were allocated to different 3-month interventions. Informed consent was obtained at the Ministry of Science and Technology and approved by the National Cheng Kung University Hospital Institutional Review Board (No. A-ER-102-425).
RESULTS: Participants in the mobile-based group had significant reductions in hemoglobin A1c compared with the telephone-based and usual care groups (mean changes of -0.4%, 0.1%, and 0.03%, respectively; P=.02). Diabetes-specific distress decreased to a greater extent in the mobile-based group compared to the other 2 groups (mean changes of -5.16, -3.49, and -2.44, respectively, P=.02). Subgroup analyses further revealed that the effects on reducing blood glucose levels in the social and communication app groups were especially evident in patients with lower distress scores, and diabetes-related distress was especially evident in participants who were younger than 60 years or had higher educational levels.
CONCLUSIONS: The findings of this study inform more flexible use of social and communication apps with in-person diabetes education and counselling.
METHODS: CT scans of 50 lower limbs were analyzed. Key anatomical landmarks such as the medial epicondyle (ME), lateral epicondyle, and transepicondylar width (TEW) were determined on 3D models constructed from the CT images. Best-fit planes placed on the most distal and posterior loci of points on the femoral condyles were used to define the distal and posterior joint lines, respectively. Statistical analysis was performed to determine the relationships between the anatomical landmarks and the distal and posterior joint lines.
RESULTS: There was a strong correlation between the distance from the ME to the distal joint line of the medial condyle (MEDC) and the distance from the ME to the posterior joint line of the medial condyle (MEPC) (p
METHODS: Fifty computed tomography scans of nonarthritic knees were evaluated using three-dimensional image processing software. Four distal femoral rotational axes were determined in the axial plane: the transepicondylar axis (TEA), transcondylar axis (TCA), posterior condylar axis (PCA), and a line perpendicular to Whiteside's anterior-posterior axis. Then, angles were measured relative to the TEA. Tibial joint line obliquity was measured as the angle between the proximal tibial plane and a line perpendicular to the axis of the tibia.
RESULTS: There was a strong positive correlation between PCA-TEA and tibial joint line obliquity (r = 0.68, P < .001) as well as TCA-TEA and tibial joint line obliquity (r = 0.69, P < .001). In addition, the tibial joint line obliquity and TCA-TEA angles were similar, 3.7° ± 2.2° (mean ± standard deviation) and 3.5° ± 1.7°, respectively (mean difference, 0.2° ± 0.2°; P = .369).
CONCLUSION: Both PCA-TEA and TCA-TEA strongly correlated with proximal tibial joint line obliquity indicating a relationship between distal femoral rotational geometry and proximal tibial inclination. These findings could imply that the native knee in flexion attempts to balance the collateral ligaments toward a rectangular flexion space. A higher tibial varus inclination is matched with a more internally rotated distal femur relative to the TEA.
RESULTS: Thirty Hy-Line Gray and thirty Lohmann Pink laying hens were used in this study to determine the impact of cecal microbial structure on odor production of laying hens. The hens were managed under the same husbandry and dietary regimes. Results of in vivo experiments showed a lower hydrogen sulfide (H2S) production from Hy-Line hens and a lower concentration of soluble sulfide (S2-) but a higher concentration of butyrate in the cecal content of the Hy-Line hens compared to Lohmann Pink hens (P 0.05). Significant microbial structural differences existed between the two breed groups. The relative abundance of some butyrate producers (including Butyricicoccus, Butyricimonas and Roseburia) and sulfate-reducing bacteria (including Mailhella and Lawsonia) were found to be significantly correlated with odor production and were shown to be different in the 16S rRNA and PCR data between two breed groups. Furthermore, some bacterial metabolism pathways associated with energy extraction and carbohydrate utilization (oxidative phosphorylation, pyruvate metabolism, energy metabolism, two component system and secretion system) were overrepresented in the Hy-Line hens, while several amino acid metabolism-associated pathways (amino acid related enzymes, arginine and proline metabolism, and alanine-aspartate and glutamate metabolism) were more prevalent in the Lohmann hens.
CONCLUSION: The results of this study suggest that genotype of laying hens influence cecal microbiota, which in turn modulates their odor production. Our study provides references for breeding and enteric manipulation for defined microbiota to reduce odor gas emission.