Displaying all 12 publications

Abstract:
Sort:
  1. Tee TT, Cheah YH, Hawariah LP
    Anticancer Res, 2007 Sep-Oct;27(5A):3425-30.
    PMID: 17970090
    F16 is a plant-derived pharmacologically active fraction extracted from Eurycoma longifolia Jack. Previously, we have reported that F16 inhibited the proliferation of MCF-7 human breast cancer cells by inducing apoptotic cell death while having some degree of cytoselectivity on a normal human breast cell line, MCF-10A. In this study, we attempted to further elucidate the mode of action of F16. We found that the intrinsic apoptotic pathway was invoked, with the reduction of Bcl-2 protein. Then, executioner caspase-7 was cleaved and activated in response to F16 treatment. Furthermore, apoptosis in the MCF- 7 cells was accompanied by the specific proteolytic cleavage of poly(ADP-ribose) polymerase-1 (PARP-1). Surprisingly, caspase-9 and p53 were unchanged with F16 treatment. We believe that the F16-induced apoptosis in MCF-7 cells occurs independently of caspase-9 and p53. Taken together, these results suggest that F16 from E. longifolia exerts anti-proliferative action and growth inhibition on MCF-7 cells through apoptosis induction and that it may have anticancer properties.
  2. Cheah YH, Azimahtol HL, Abdullah NR
    Anticancer Res, 2006 Nov-Dec;26(6B):4527-34.
    PMID: 17201174
    Xanthorrhizol is a natural sesquiterpenoid compound isolated from the rhizome of Curcuma xanthorrhiza Roxb (Zingiberaceae). Xanthorrhizol was tested for a variety of important pharmacological activities including antioxidant and anti-inflammatory activities. An antiproliferation assay using the MTT method indicated that xanthorrhizol inhibited the proliferation of the human breast cancer cell line, MCF-7, with an EC50 value of 1.71 microg/ml. Three parameters including annexin-V binding assay, Hoechst 33258 staining and accumulation of sub-G1 population in DNA histogram confirmed the apoptosis induction in response to xanthorrhizol treatment. Western-blotting revealed down-regulation of the anti-apoptotic bcl-2 protein expression. However, xanthorrhizol did not affect the expression of the pro-apoptotic protein, bax, at a concentration of 1 microg/ml, 2.5 microg/ml and 5 microg/ml. The level of p53 was greatly increased, whilst PARP-1 was cleaved to 85 kDa subunits, following the treatment with xanthorrhizol at a dose-dependent manner. These results, thereby, suggest that xanthorrhizol has antiproliferative effects on MCF-7 cells by inducing apoptosis through the modulation of bcl-2, p53 and PARP-1 protein levels.
  3. Tee TT, Cheah YH, Meenakshii N, Mohd Sharom MY, Azimahtol Hawariah LP
    Biochem Biophys Res Commun, 2012 Apr 20;420(4):834-8.
    PMID: 22465013 DOI: 10.1016/j.bbrc.2012.03.083
    Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X(L) expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.
  4. Cheah YH, Nordin FJ, Tee TT, Azimahtol HL, Abdullah NR, Ismail Z
    Anticancer Res, 2008 Nov-Dec;28(6A):3677-89.
    PMID: 19189649
    Xanthorrhizol is a natural sesquiterpenoid compound isolated from the rhizome of Curcuma xanthorrhizza Roxb (Zingerberaceae). Recent studies of xanthorrhizol in cell cultures strongly support the role of xanthorrhizol as an antiproliferative agent. In our study, we tested the antiproliferative effect of xanthorrhizol using different breast cancer cell lines. The invasive breast cancer cell line, MDA-MB-231, was then selected for further investigations. Treatment with xanthorrhizol caused 50% growth inhibition on MDA-MB-231 cells at 8.67 +/- 0.79 microg/ml as determined by sulforhodamine B (SRB) assay. Hoechst 33258 nuclear staining assay showed the rate of apoptosis of MDA-MB-231 cells to increase in response to xanthorrhizol treatment. Immunofluorescence staining using antibody MitoCapture and fluorescein isothiocyanate (FITC)-labeled cytochrome c revealed the possibility of altered mitochondrial transmembrane potential and the release of cytochrome c respectively. This was further confirmed by Western-blotting, where cytochrome c was showed to migrate from mitochondrial fraction to the cytosol fraction of treated MDA-MB-231 cells. Caspase activity assay showed the involvement of caspase-3 and caspase-9, but not caspase-6 or caspase-8 in MDA-MB-231 apoptotic cell death. Subsequently, cleavage of PARP-1 protein is suggested. These data suggest treatment with xanthorrhizol modulates MDA-MB-231 cell apoptosis through the mitochondria-mediated pathway subsequent to the disruption of mitochondrial transmembrane potential, release of cytochrome c, activation of caspase-3 and caspase-9, and the modulation of PARP-1 protein.
  5. Shahid M, Azfaralariff A, Law D, Najm AA, Sanusi SA, Lim SJ, et al.
    Sci Rep, 2021 01 15;11(1):1594.
    PMID: 33452398 DOI: 10.1038/s41598-021-81026-9
    Xanthorrhizol (XNT), is a bioactive compound found in Curcuma xanthorrhiza Roxb. This study aimed to determine the potential targets of the XNT via computational target fishing method. This compound obeyed Lipinski's and Veber's rules where it has a molecular weight (MW) of 218.37 gmol-1, TPSA of 20.23, rotatable bonds (RBN) of 4, hydrogen acceptor and donor ability is 1 respectively. Besides, it also has half-life (HL) values 3.5 h, drug-likeness (DL) value of 0.07, oral bioavailability (OB) of 32.10, and blood-brain barrier permeability (BBB) value of 1.64 indicating its potential as therapeutic drug. Further, 20 potential targets were screened out through PharmMapper and DRAR-CPI servers. Co-expression results derived from GeneMANIA revealed that these targets made connection with a total of 40 genes and have 744 different links. Four genes which were RXRA, RBP4, HSD11B1 and AKR1C1 showed remarkable co-expression and predominantly involved in steroid metabolic process. Furthermore, among these 20 genes, 13 highly expressed genes associated with xenobiotics by cytochrome P450, chemical carcinogenesis and steroid metabolic pathways were identified through gene ontology (GO) and KEGG pathway analysis. In conclusion, XNT is targeting multiple proteins and pathways which may be exploited to shape a network that exerts systematic pharmacological effects.
  6. Oon SF, Nallappan M, Kassim NK, Shohaimi S, Sa'ariwijaya MS, Tee TT, et al.
    Biochem Biophys Res Commun, 2016 09 23;478(3):1403-8.
    PMID: 27576204 DOI: 10.1016/j.bbrc.2016.08.136
    Hyperlipidemia is defined as the presence of either hypertriglyceridemia or hypercholesterolemia, which could cause atherosclerosis. Although hyperlipidemia can be treated by hypolipidemic drugs, they are limited due to lack of effectiveness and safety. Previous studies demonstrated that xanthorrhizol (XNT) isolated from Curcuma xanthorrhizza Roxb. reduced the levels of free fatty acid and triglyceride in vivo. However, its ability to inhibit cholesterol uptake in HT29 colon cells and adipogenesis in 3T3-L1 cells are yet to be reported. In this study, XNT purified from centrifugal TLC demonstrated 98.3% purity, indicating it could be an alternative purification method. The IC50 values of XNT were 30.81 ± 0.78 μg/mL in HT29 cells and 35.07 ± 0.24 μg/mL in 3T3-L1 adipocytes, respectively. Cholesterol uptake inhibition study using HT29 colon cells showed that XNT (15 μg/mL) significantly inhibited the fluorescent cholesterol analogue NBD uptake by up to 27 ± 3.1% relative to control. On the other hand, higher concentration of XNT (50 μg/mL) significantly suppressed the growth of 3T3-L1 adipocytes (5.9 ± 0.58%) compared to 3T3-L1 preadipocytes (81.31 ± 0.55%). XNT was found to impede adipogenesis of 3T3-L1 adipocytes in a dose-dependent manner from 3.125 to 12.5 μg/mL, where 12.5 μg/mL significantly suppressed 36.13 ± 2.1% of lipid accumulation. We postulate that inhibition of cholesterol uptake, adipogenesis, preadipocyte and adipocyte number may be utilized as treatment modalities to reduce the prevalence of lipidemia. To conclude, XNT could be a potential hypolipidemic agent to improve cardiovascular health in the future.
  7. Perumal N, Nallappan M, Shohaimi S, Kassim NK, Tee TT, Cheah YH
    Biomed Pharmacother, 2022 Jan;145:112401.
    PMID: 34785415 DOI: 10.1016/j.biopha.2021.112401
    Type 2 Diabetes Mellitus accounts for 90% of most diabetes cases. Many commercial drugs used to treat this disease come with adverse side effects and eventually fail to restore glucose homeostasis. Therefore, an effective, economical and safe antidiabetic remedy from dietary source is considered. Taraxacum officinale (L.) Weber ex F.H.Wigg and Momordica charantia L. were chosen since both are used for centuries as traditional medicine to treat various ailments and diseases. In this study, the antidiabetic properties of a polyherbal combination of T. officinale and M. charantia ethanol extracts are evaluated. The bioactive solvent extracts of the samples selected from in vitro antidiabetic assays; α-amylase, α-glucosidase, and dipeptidyl peptidase-4 (DPP-4) inhibition, and glucose-uptake in L6 muscle cells were combined (1:1) to form the polyherbal combination. The antidiabetic efficacy of polyherbal combination was evaluated employing the above stated in vitro antidiabetic assays and in vivo oral glucose tolerance test and streptozotocin-nicotinamide (STZ-NA) induced diabetic rat model. A quadrupole time-of-flight liquid chromatography-mass spectrometry (Q-TOF LCMS) analysis was done to identify active compounds. The polyherbal combination exerted improved antidiabetic properties; increased DPP-4, α-amylase, and α-glucosidase inhibition. The polyherbal combination tested in vivo on diabetic rats showed optimum blood glucose-lowering activity comparable to that of Glibenclamide and Metformin. This study confirms the polyherbal combination of T. officinale and M. charantia to be rich in various bioactive compounds, which exhibited antidiabetic properties. Therefore, this polyherbal combination has the potential to be further developed as complex phytotherapeutic remedy for the treatment of Type 2 Diabetes Mellitus.
  8. Oon SF, Nallappan M, Tee TT, Shohaimi S, Kassim NK, Sa'ariwijaya MS, et al.
    Cancer Cell Int, 2015;15:100.
    PMID: 26500452 DOI: 10.1186/s12935-015-0255-4
    Xanthorrhizol (XNT) is a bisabolane-type sesquiterpenoid compound extracted from Curcuma xanthorrhiza Roxb. It has been well established to possess a variety of biological activities such as anticancer, antimicrobial, anti-inflammatory, antioxidant, antihyperglycemic, antihypertensive, antiplatelet, nephroprotective, hepatoprotective, estrogenic and anti-estrogenic effects. Since many synthetic drugs possess toxic side effects and are unable to support the increasing prevalence of disease, there is significant interest in developing natural product as new therapeutics. XNT is a very potent natural bioactive compound that could fulfil the current need for new drug discovery. Despite its importance, a comprehensive review of XNT's pharmacological activities has not been published in the scientific literature to date. Here, the present review aims to summarize the available information in this area, focus on its anticancer properties and indicate the current status of the research. This helps to facilitate the understanding of XNT's pharmacological role in drug discovery, thus suggesting areas where further research is required.
  9. Chan YS, Cheah YH, Chong PZ, Khor HL, Teh WS, Khoo KS, et al.
    Pak J Pharm Sci, 2018 Jan;31(1):119-127.
    PMID: 29348093
    This study was conducted to investigate the antifungal potential and cytotoxicity of selected medicinal plants from Malaysia. The extracts from the stem of Cissus quadrangularis and the leaves of Asplenium nidus, Pereskia bleo, Persicaria odorata and Sauropus androgynus were assayed against six fungi using p-iodonitrotetrazolium-based on colorimetric broth microdilution method. All the plant extracts were found to be fungicidal against at least one type of fungus. The strongest fungicidal activity (minimum fungicidal concentration=0.16 mg/mL) were exhibited by the hexane extract of C. quadrangularis, the hexane, chloroform, ethanol and methanol extracts of P. bleo, the hexane and ethyl acetate extracts of P. odorata, and the water extract of A. nidus. In terms of cytotoxicity on the African monkey kidney epithelial (Vero) cells, the chloroform extract of P. odorata produced the lowest 50% cytotoxic concentration (100.3 ± 4.2 μ g/mL). In contrast, none of the water extracts from the studied plants caused significant toxicity on the cells. The water extract of A. nidus warrants further investigation since it showed the strongest fungicidal activity and the highest total activity (179.22 L/g) against Issatchenkia orientalis, and did not cause any toxicity to the Vero cells.
  10. Cheah YH, Nordin FJ, Sarip R, Tee TT, Azimahtol HL, Sirat HM, et al.
    Cancer Cell Int, 2009;9:1.
    PMID: 19118501 DOI: 10.1186/1475-2867-9-1
    It has been suggested that combined effect of natural products may improve the treatment effectiveness in combating proliferation of cancer cells. The present study was undertaken to evaluate the possibility that the combination of xanthorrhizol and curcumin might show synergistic growth inhibitory effect towards MDA-MB-231 human breast cancer cells via apoptosis induction. The effective dose that produced 50% growth inhibition (GI50) was calculated from the log dose-response curve of fixed-combinations of xanthorrhizol and curcumin generated from the sulforhodamine B (SRB) assay. The experimental GI50 value was used to determine the synergistic activity of the combination treatment by isobolographic analysis and combination-index method. Further investigation of mode of cell death induced by the combination treatment was conducted in the present study.
  11. Swarna Nantha Y, Vijayasingham S, Adam NL, Vengadasalam P, Ismail M, Ali N, et al.
    Diabetes Obes Metab, 2023 Nov;25(11):3298-3306.
    PMID: 37551550 DOI: 10.1111/dom.15229
    AIM: Evidence from the literature points towards a viable choice of utilizing Labisia pumila to improve the metabolic profile in animal studies. To that end, this prospective study was designed to assess the health impact of the consumption of L. pumila standardized extract (SKF7®) on key parameters of obesity in humans such as body weight (BW), body mass index (BMI), waist circumference (WC) and waist-to-height ratio (WHtR).

    MATERIALS AND METHODS: A dose-ranging analysis using SKF7® was conducted through a randomized, double-blind, multicentre, placebo-controlled, phase 2 clinical trial involving individuals with obesity (N = 133) between January 2020 and April 2021. The potential percentage of change was assessed in relation to BW, BMI, WC and WHtR.

    RESULTS: Average treatment effect estimates (treatment group vs. placebo) show a statistically significant reduction in the percentage of change for BW (mean = -2.915; CI: -4.546, -1.285), BMI (-2.921; CI: -4.551, -1.291), WC (mean = -2.187; CI: -3.784, -0.589) and WHtR (mean = -2.294, CI: -3.908, -0.681) in the group with a total of 750 mg of SKF7® (p 

  12. Fazry S, Noordin MAM, Sanusi S, Noor MM, Aizat WM, Lazim AM, et al.
    Toxics, 2018 Oct 09;6(4).
    PMID: 30304811 DOI: 10.3390/toxics6040060
    Xanthone is an organic compound mostly found in mangosteen pericarp and widely known for its anti-proliferating effect on cancer cells. In this study, we evaluated the effects of xanthone crude extract (XCE) and α-mangostin (α-MG) on normoxic and hypoxic human hepatocellular carcinoma (HepG2) cells and their toxicity towards zebrafish embryos. XCE was isolated using a mixture of acetone and water (80:20) and verified via high performance liquid chromatography (HPLC). Both XCE and α-MG showed higher anti-proliferation effects on normoxic HepG2 cells compared to the control drug, 5-fluorouracil (IC50 = 50.23 ± 1.38, 8.39 ± 0.14, and 143.75 ± 15.31 μg/mL, respectively). In hypoxic conditions, HepG2 cells were two times less sensitive towards XCE compared to normoxic HepG2 cells (IC50 = 109.38 ± 1.80 μg/mL) and three times less sensitive when treated with >500 μg/mL 5-fluorouracil (5-FU). A similar trend was seen with the α-MG treatment on hypoxic HepG2 cells (IC50 = 10.11 ± 0.05 μg/mL) compared to normoxic HepG2 cells. However, at a concentration of 12.5 μg/mL, the α-MG treatment caused tail-bend deformities in surviving zebrafish embryos, while no malformation was observed when embryos were exposed to XCE and 5-FU treatments. Our study suggests that both XCE and α-MG are capable of inhibiting HepG2 cell proliferation during normoxic and hypoxic conditions, more effectively than 5-FU. However, XCE is the preferred option as no malformation was observed in surviving zebrafish embryos and it is more cost efficient than α-MG.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links