Displaying publications 1 - 20 of 54 in total

Abstract:
Sort:
  1. Show KY, Lee DJ, Chang JS
    Bioresour Technol, 2013 May;135:720-9.
    PMID: 22939595 DOI: 10.1016/j.biortech.2012.08.021
    Biofuels are viewed as promising alternatives to conventional fossil fuels because they have the potential to eliminate major environmental problems created by fossil fuels. Among the still developing biofuel technologies, biodiesel production from algae offers a greater prospect for large-scale practical use, as algae are capable of producing much more yield than other biofuels. While research on algae-based biofuel is still in its developing stage, extensive work on laboratory- and pilot-scale algae harvesting systems with promising prospects has been reported. This paper presented a discussion of the literature review on recent advances in algae separation, harvesting and drying for biofuel production. The review and discussion focus on destabilization of algae, algae harvesting technologies and algae drying processes. Challenges and prospects of algae harvesting are also outlined.
  2. Show KY, Lee DJ, Chang JS
    Bioresour Technol, 2011 Sep;102(18):8524-33.
    PMID: 21624834 DOI: 10.1016/j.biortech.2011.04.055
    Biohydrogen is regarded as an attractive future clean energy carrier due to its high energy content and environmental-friendly conversion. It has the potential for renewable biofuel to replace current hydrogen production which rely heavily on fossil fuels. While biohydrogen production is still in the early stage of development, there have been a variety of laboratory- and pilot-scale systems developed with promising potential. This work presents a review of advances in bioreactor and bioprocess design for biohydrogen production. The state-of-the art of biohydrogen production is discussed emphasizing on production pathways, factors affecting biohydrogen production, as well as bioreactor configuration and operation. Challenges and prospects of biohydrogen production are also outlined.
  3. Kamis AB, Ahmad RA, Chang JS, Ambu S
    Parasitol Res, 1994;80(1):87-8.
    PMID: 8153134
    Daily intramuscular injection with thyroxine (T4) at a dose of 2.5 micrograms/100 g body weight decreased the larvae and adult worm burden of Parastrongylus malaysiensis in the brain and pulmonary arteries of male Sprague-Dawley albino rats. In contrast, rats treated with propyl thiouracil (PTU), an antithyroid drug, at a dose of 3.75 mg/100 g body weight retained greater numbers of larvae and adult worms. The results may reflect the contrasting immunomodulatory effects of T4 and PTU that influence the susceptibility of the host.
  4. Chang JS, Show PL, Lee DJ, Christakopoulos P
    Bioresour Technol, 2022 Mar;347:126735.
    PMID: 35051567 DOI: 10.1016/j.biortech.2022.126735
  5. Cheah WY, Show PL, Chang JS, Ling TC, Juan JC
    Bioresour Technol, 2015 May;184:190-201.
    PMID: 25497054 DOI: 10.1016/j.biortech.2014.11.026
    The unceasing rise of greenhouse gas emission has led to global warming and climate change. Global concern on this phenomenon has put forward the microalgal-based CO2 sequestration aiming to sequester carbon back to the biosphere, ultimately reducing greenhouse effects. Microalgae have recently gained enormous attention worldwide, to be the valuable feedstock for renewable energy production, due to their high growth rates, high lipid productivities and the ability to sequester carbon. The photosynthetic process of microalgae uses atmospheric CO2 and CO2 from flue gases, to synthesize nutrients for their growth. In this review article, we will primarily discuss the efficiency of CO2 biosequestration by microalgae species, factors influencing microalgal biomass productions, microalgal cultivation systems, the potential and limitations of using flue gas for microalgal cultivation as well as the bio-refinery approach of microalgal biomass.
  6. Tan CH, Show PL, Chang JS, Ling TC, Lan JC
    Biotechnol Adv, 2015 Nov 1;33(6 Pt 2):1219-27.
    PMID: 25728066 DOI: 10.1016/j.biotechadv.2015.02.013
    Microalgae have caught the world's attention for its potential to solve one of the world's most pressing issues-sustainable green energy. Compared to biofuels supplied by oil palm, rapeseed, soybean and sugar cane, microalgae alone can be manipulated to generate larger amounts of biodiesel, bioethanol, biohydrogen and biomass in a shorter time. Apart from higher productivity, microalgae can also grow using brackish water on non-arable land, greatly reducing the competition with food and cash crops. Hence, numerous efforts have been put into the commercialisation of microalgae-derived biofuel by both the government and private bodies. This paper serves to review conventional and novel methods for microalgae culture and biomass harvest, as well as recent developments in techniques for microalgal biofuel production.
  7. Cheah WY, Ling TC, Juan JC, Lee DJ, Chang JS, Show PL
    Bioresour Technol, 2016 Sep;215:346-56.
    PMID: 27090405 DOI: 10.1016/j.biortech.2016.04.019
    Greenhouse gas emissions have several adverse environmental effects, like pollution and climate change. Currently applied carbon capture and storage (CCS) methods are not cost effective and have not been proven safe for long term sequestration. Another attractive approach is CO2 valorization, whereby CO2 can be captured in the form of biomass via photosynthesis and is subsequently converted into various form of bioenergy. This article summarizes the current carbon sequestration and utilization technologies, while emphasizing the value of bioconversion of CO2. In particular, CO2 sequestration by terrestrial plants, microalgae and other microorganisms are discussed. Prospects and challenges for CO2 conversion are addressed. The aim of this review is to provide comprehensive knowledge and updated information on the current advances in biological CO2 sequestration and valorization, which are essential if this approach is to achieve environmental sustainability and economic feasibility.
  8. Fayyaz M, Chew KW, Show PL, Ling TC, Ng IS, Chang JS
    Biotechnol Adv, 2020 11 01;43:107554.
    PMID: 32437732 DOI: 10.1016/j.biotechadv.2020.107554
    Microalgae-based bioproducts are in limelight because of their promising future, novel characteristics, the current situation of population needs, and rising prices of rapidly depleting energy resources. Algae-based products are considered as clean sustainable energy and food resources. At present, they are not commercialized due to their high production cost and low yield. In recent years, novel genome editing tools like RNAi, ZNFs, TALENs, and CRISPR/Cas9 are used to enhance the quality and quantity of the desired products. Genetic and metabolic engineering are frequently applied because of their rapid and precise results than random mutagenesis. Omic approaches help enhance biorefinery capabilities and are now in the developing stage for algae. The future is very bright for transgenic algae with increased biomass yield, carbon dioxide uptake rate, accumulating high-value compounds, reduction in cultivation, and production costs, thus reaching the goal in the global algal market and capital flow. However, microalgae are primary producers and any harmful exposure to the wild strains can affect the entire ecosystem. Therefore, strict regulation and monitoring are required to assess the potential risks before introducing genetically modified microalgae into the natural ecosystem.
  9. Teng SY, Yew GY, Sukačová K, Show PL, Máša V, Chang JS
    Biotechnol Adv, 2020 11 15;44:107631.
    PMID: 32931875 DOI: 10.1016/j.biotechadv.2020.107631
    With recent advances in novel gene-editing tools such as RNAi, ZFNs, TALENs, and CRISPR-Cas9, the possibility of altering microalgae toward designed properties for various application is becoming a reality. Alteration of microalgae genomes can modify metabolic pathways to give elevated yields in lipids, biomass, and other components. The potential of such genetically optimized microalgae can give a "domino effect" in further providing optimization leverages down the supply chain, in aspects such as cultivation, processing, system design, process integration, and revolutionary products. However, the current level of understanding the functional information of various microalgae gene sequences is still primitive and insufficient as microalgae genome sequences are long and complex. From this perspective, this work proposes to link up this knowledge gap between microalgae genetic information and optimized bioproducts using Artificial Intelligence (AI). With the recent acceleration of AI research, large and complex data from microalgae research can be properly analyzed by combining the cutting-edge of both fields. In this work, the most suitable class of AI algorithms (such as active learning, semi-supervised learning, and meta-learning) are discussed for different cases of microalgae applications. This work concisely reviews the current state of the research milestones and highlight some of the state-of-art that has been carried out, providing insightful future pathways. The utilization of AI algorithms in microalgae cultivation, system optimization, and other aspects of the supply chain is also discussed. This work opens the pathway to a digitalized future for microalgae research and applications.
  10. Chang JS, Strunk J, Chong MN, Poh PE, Ocon JD
    J Hazard Mater, 2020 01 05;381:120958.
    PMID: 31416043 DOI: 10.1016/j.jhazmat.2019.120958
    While bulk zinc oxide (ZnO) is of non-toxic in nature, ZnO nanoarchitectures could potentially induce the macroscopic characteristics of oxidative, lethality and toxicity in the water environment. Here we report a systematic study through state-of-the-art controllable synthesis of multi-dimensional ZnO nanoarchitectures (i.e. 0D-nanoparticle, 1D-nanorod, 2D-nanosheet, and 3D-nanoflowers), and subsequent in-depth understanding on the fundamental factor that determines their photoactivities. The photoactivities of resultant ZnO nanoarchitectures were interpreted in terms of the photodegradation of salicylic acid as well as inactivation of Bacillus subtilis and Escherichia coli under UV-A irradiation. Photodegradation results showed that 1D-ZnO nanorods demonstrated the highest salicylic acid photodegradation efficiency (99.4%) with a rate constant of 0.0364 min-1. 1D-ZnO nanorods also exhibited the highest log reductions of B. subtilis and E. coli of 3.5 and 4.2, respectively. Through physicochemical properties standardisation, an intermittent higher k value for pore diameter (0.00097 min-1 per mm), the highest k values for crystallite size (0.00171 min-1 per nm) and specific surface area (0.00339 min-1 per m2/g) contributed to the exceptional photodegradation performance of nanorods. Whereas, the average normalised log reduction against the physicochemical properties of nanorods (i.e. low crystallite size, high specific surface area and pore diameter) caused the strongest bactericidal effect.
  11. Tan CH, Show PL, Ling TC, Nagarajan D, Lee DJ, Chen WH, et al.
    Bioresour Technol, 2019 Aug;285:121331.
    PMID: 30999192 DOI: 10.1016/j.biortech.2019.121331
    Third generation biofuels, also known as microalgal biofuels, are promising alternatives to fossil fuels. One attractive option is microalgal biodiesel as a replacement for diesel fuel. Chlamydomonas sp. Tai-03 was previously optimized for maximal lipid production for biodiesel generation, achieving biomass growth and productivity of 3.48 ± 0.04 g/L and 0.43 ± 0.01 g/L/d, with lipid content and productivity of 28.6 ± 1.41% and 124.1 ± 7.57 mg/L/d. In this study, further optimization using 5% CO2 concentration and semi-batch operation with 25% medium replacement ratio, enhanced the biomass growth and productivity to 4.15 ± 0.12 g/L and 1.23 ± 0.02 g/L/d, with lipid content and productivity of 19.4 ± 2.0% and 239.6 ± 24.8 mg/L/d. The major fatty acid methyl esters (FAMEs) were palmitic acid (C16:0), oleic acid (C18:1), and linoleic acid (C18:2). These short-chain FAMEs combined with high growth make Chlamydomonas sp. Tai-03 a suitable candidate for biodiesel synthesis.
  12. Yong JJJY, Chew KW, Khoo KS, Show PL, Chang JS
    Biotechnol Adv, 2020 12 30;47:107684.
    PMID: 33387639 DOI: 10.1016/j.biotechadv.2020.107684
    The coexistence of algae and bacteria in nature dates back to the very early stages when life came into existence. The interaction between algae and bacteria plays an important role in the planet ecology, cycling nutrients, and feeding higher trophic levels, and have been evolving ever since. The emerging concept of algal-bacterial consortia is gaining attention, much towards environmental management and protection. Studies have shown that algal-bacterial synergy does not only promote carbon capture in wastewater bioremediation but also consequently produces biofuels from algal-bacterial biomass. This review has evaluated the optimistic prospects of algal-bacterial consortia in environmental remediation, biorefinery, carbon sequestration as well as its contribution to the production of high-value compounds. In addition, algal-bacterial consortia offer great potential in bloom control, dye removal, agricultural biofertilizers, and bioplastics production. This work also emphasizes the advancement of algal-bacterial biotechnology in environmental management through the incorporation of Industry Revolution 4.0 technologies. The challenges include its pathway to greener industry, competition with other food additive sources, societal acceptance, cost feasibility, environmental trade-off, safety and compatibility. Thus, there is a need for further in-depth research to ensure the environmental sustainability and feasibility of algal-bacterial consortia to meet numerous current and future needs of society in the long run.
  13. Koyande AK, Chew KW, Show PL, Munawaroh HSH, Chang JS
    Bioresour Technol, 2021 Aug;333:125075.
    PMID: 33872996 DOI: 10.1016/j.biortech.2021.125075
    Microalgae are potential sustainable renewable sources of energy but are highly underutilized due to the expensive and time-consuming downstream processing. This study aims at curbing these obstacles by extracting multiple components with a single processing unit. In this work, an ultrasound-assisted liquid triphasic flotation system was incorporated to extract proteins, lipids, and carbohydrates by phase separation. The parameters involved were optimized and the final recovery efficiency of proteins, lipids, and carbohydrates was determined. A control run involving conventional three-phase partitioning and a 15-fold scale-up system with the recycling of phase components were also performed. Gas Chromatograph and Fourier Transform Infrared spectroscopy were used to examine the potential of extracted products as a source of biofuel. This biorefinery approach is crucial in commercializing microalgae for biodiesel and bioethanol generation with a side product of purified proteins as feed.
  14. Leong YK, Chew KW, Chen WH, Chang JS, Show PL
    Trends Plant Sci, 2021 07;26(7):729-740.
    PMID: 33461869 DOI: 10.1016/j.tplants.2020.12.010
    Given their advantages of high photosynthetic efficiency and non-competition with land-based crops, algae, that are carbon-hungry and sunlight-driven microbial factories, are a promising solution to resolve energy crisis, food security, and pollution problems. The ability to recycle nutrient and CO2 fixation from waste sources makes algae a valuable feedstock for biofuels, food and feeds, biochemicals, and biomaterials. Innovative technologies such as the bicarbonate-based integrated carbon capture and algae production system (BICCAPS), integrated algal bioenergy carbon capture and storage (BECCS), as well as ocean macroalgal afforestation (OMA), can be used to realize a low-carbon algal bioeconomy. We review how algae can be applied in the framework of integrated low-carbon circular bioeconomy models, focusing on sustainable biofuels, low-carbon feedstocks, carbon capture, and advances in algal biotechnology.
  15. Chew KW, Chia SR, Show PL, Ling TC, Arya SS, Chang JS
    Bioresour Technol, 2018 Nov;267:356-362.
    PMID: 30029182 DOI: 10.1016/j.biortech.2018.07.069
    The present study investigates the prospective of substituting inorganic medium with organic food waste compost medium as a nutrient supplement for the cultivation of Chlorella vulgaris FSP-E. Various percentages of compost mixtures were replaced in the inorganic medium to compare the algal growth and biochemical composition. The use of 25% compost mixture combination was found to yield higher biomass concentration (11.1%) and better lipid (10.1%) and protein (2.0%) content compared with microalgae cultivation in fully inorganic medium. These results exhibited the potential of combining the inorganic medium with organic food waste compost medium as an effective way to reduce the cultivation cost of microalgae and to increase the biochemical content in the cultivated microalgae.
  16. Show PL, Tang MS, Nagarajan D, Ling TC, Ooi CW, Chang JS
    Int J Mol Sci, 2017 Jan 22;18(1).
    PMID: 28117737 DOI: 10.3390/ijms18010215
    Microalgae contribute up to 60% of the oxygen content in the Earth's atmosphere by absorbing carbon dioxide and releasing oxygen during photosynthesis. Microalgae are abundantly available in the natural environment, thanks to their ability to survive and grow rapidly under harsh and inhospitable conditions. Microalgal cultivation is environmentally friendly because the microalgal biomass can be utilized for the productions of biofuels, food and feed supplements, pharmaceuticals, nutraceuticals, and cosmetics. The cultivation of microalgal also can complement approaches like carbon dioxide sequestration and bioremediation of wastewaters, thereby addressing the serious environmental concerns. This review focuses on the factors affecting microalgal cultures, techniques adapted to obtain high-density microalgal cultures in photobioreactors, and the conversion of microalgal biomass into biofuels. The applications of microalgae in carbon dioxide sequestration and phycoremediation of wastewater are also discussed.
  17. Sankaran R, Manickam S, Yap YJ, Ling TC, Chang JS, Show PL
    Ultrason Sonochem, 2018 Nov;48:231-239.
    PMID: 30080546 DOI: 10.1016/j.ultsonch.2018.06.002
    In this study, a simple sugaring-out supported by liquid biphasic flotation technique combined with ultrasonication was introduced for the extraction of proteins from microalgae. Sugaring-out as a phase separation method is novel and has been used in the extraction of metal ions, biomolecules and drugs. But, its functioning in protein separation from microalgae is still unknown. In this work, the feasibility of sugaring-out coupled with ultrasound for the extraction of protein was investigated. Primary studies were carried out to examine the effect of sonication on the microalgae cell as well as the separation efficiency of the integrated method. Effect of various operating parameters such as the concentration of microalgae biomass, the location of sonication probe, sonication time, ultrasonic pulse mode (includes varying ON and OFF duration of sonication), concentration of glucose, types of sugar, concentration of acetonitrile and the flow rate in the flotation system for achieving a higher separation efficiency and yield of protein were assessed. Besides, a large-scale study of the integration method was conducted to verify the consistency of the followed technique. A maximum efficiency (86.38%) and yield (93.33%) were attained at the following optimized conditions: 0.6% biomass concentration, 200 g/L of glucose concentration, 100% acetonitrile concentration with 5 min of 5 s ON/10 s OFF pulse mode and at a flow rate of 100 cc/min. The results obtained for large scale were 85.25% and 92.24% for efficiency and yield respectively. The proposed liquid biphasic flotation assisted with ultrasound for protein separation employing sugaring-out demonstrates a high production and separation efficiency and is a cost-effective solution. More importantly, this method provides the possibility of extending its application for the extraction of other important biomolecules.
  18. Lee XJ, Show PL, Katsuda T, Chen WH, Chang JS
    Bioresour Technol, 2018 Dec;269:489-502.
    PMID: 30172460 DOI: 10.1016/j.biortech.2018.08.090
    Membrane bioreactor (MBR) is regarded as the state-of-the-art technology in separation processes. Surface modification techniques play a critical role in improving the conventional membrane system which is mostly hydrophobic in nature. The hydrophobic nature of membranes is known to cause fouling, resulting in high maintenance costs and shorter lifespan of MBR. Thus, surface grafting aims to improve the hydrophilicity of bio-based membrane systems. This review describes the major surface grafting techniques currently used in membranes, including photo induced grafting, plasma treatment and plasma induced grafting, radiation induced grafting, thermal induced grafting and ozone induced grafting. The advantages and disadvantages of each method is discussed along with their parametric studies. The potential applications of MBR are very promising, but some integral membrane properties could be a major challenge that hinders its wider reach. The fouling issue could be resolved with the surface grafting techniques to achieve better performance of MBRs.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links