OBJECTIVE: This 12-week pilot study examines the efficacy of applying low frequency sound wave stimulation (between 16-160 Hz) through both hands and feet on relieving pain and improving functional ability in patients with chronic back pain.
METHODS: Twenty-three participants with chronic shoulder (eleven participants) or low back pain (twelve participants) underwent a 12-week vibration therapy program of three sessions per week. A low frequency sound wave device comprising four piezoelectric vibration-type tactile tranducers enclosed in separate 5-cm diameter circular plates, which generate sinusoidal vibratory stimuli at a frequency of 16-160 Hz, was used in this study. Primary outcome measure was pain sensation measured using the Visual Analogue Scale (P-VAS). The secondary outcome measures were pain-related disability measured using the pain disability index (PDI) and quality of life measured using the SF-12.
RESULTS: At week 12, significant reductions in pain sensation and pain-related disability were observed, with mean reductions of 3.5 points in P-VAS and 13.5 points in the PDI scores. Sixty-five percent of the participants had a reduction of at least 3 points on the P-VAS score, while 52% participants showed a decrease of at least 10 points in the PDI score. Significant improvement was observed in the SF-12 physical composite score but not the mental composite score.
CONCLUSIONS: The preliminary findings showed that passive application of low frequency sound wave stimulation therapy through both hands and feet was effective in alleviating pain and improving functional ability in patients with chronic back pain.
PURPOSE: To develop 3D personalized left ventricular (LV) models and thickening assessment framework for assessing regional wall thickening dysfunction and dyssynchrony in AMI patients.
STUDY TYPE: Retrospective study, diagnostic accuracy.
SUBJECTS: Forty-four subjects consisting of 15 healthy subjects and 29 AMI patients.
FIELD STRENGTH/SEQUENCE: 1.5T/steady-state free precession cine MRI scans; LGE MRI scans.
ASSESSMENT: Quantitative thickening measurements across all cardiac phases were correlated and validated against clinical evaluation of infarct transmurality by an experienced cardiac radiologist based on the American Heart Association (AHA) 17-segment model.
STATISTICAL TEST: Nonparametric 2-k related sample-based Kruskal-Wallis test; Mann-Whitney U-test; Pearson's correlation coefficient.
RESULTS: Healthy LV wall segments undergo significant wall thickening (P 50% transmurality) underwent remarkable wall thinning during contraction (thickening index [TI] = 1.46 ± 0.26 mm) as opposed to healthy myocardium (TI = 4.01 ± 1.04 mm). For AMI patients, LV that showed signs of thinning were found to be associated with a significantly higher percentage of dyssynchrony as compared with healthy subjects (dyssynchrony index [DI] = 15.0 ± 5.0% vs. 7.5 ± 2.0%, P
Method: Computed tomography angiography was performed on 13 type B aortic dissection patients before and after procedure, and at 6 and 12 months follow-up. The lumens were divided into three regions: the stented area (Region 1), distal to the stent graft to the celiac artery (Region 2), and between the celiac artery and the iliac bifurcation (Region 3). Changes in aortic morphology were quantified by the increase or decrease of diametric and volumetric percentages from baseline measurements.
Results: At Region 1, the TL diameter and volume increased (pre-treatment: volume =51.4±41.9 mL, maximal axial diameter =22.4±6.8 mm, maximal orthogonal diameter =21.6±7.2 mm; follow-up: volume =130.7±69.2 mL, maximal axial diameter =40.1±8.1 mm, maximal orthogonal diameter =31.9+2.6 mm, P<0.05 for all comparisons), while FL decreased (pre-treatment: volume =129.6±150.5 mL; maximal axial diameter =43.0±15.8 mm; maximal orthogonal diameter =28.3±12.6 mm; follow-up: volume =66.6±95.0 mL, maximal axial diameter =24.5±19.9 mm, maximal orthogonal diameter =16.9±13.7, P<0.05 for all comparisons). Due to the uniformity in size throughout the vessel, high concordance was observed between diametric and volumetric measurements in the stented region with 93% and 92% between maximal axial diameter and volume for the true/false lumens, and 90% and 92% between maximal orthogonal diameter and volume for the true/false lumens. Large discrepancies were observed between the different measurement methods at regions distal to the stent graft, with up to 46% differences between maximal orthogonal diameter and volume.
Conclusions: Volume measurement was shown to be a much more sensitive indicator in identifying lumen expansion/shrinkage at the distal stented region.