Displaying all 3 publications

Abstract:
Sort:
  1. Hasan H, Abd Rahim MH, Campbell L, Carter D, Abbas A, Montoya A
    N Biotechnol, 2019 Sep 25;52:19-24.
    PMID: 30995533 DOI: 10.1016/j.nbt.2019.04.003
    Lovastatin is widely prescribed to reduce elevated levels of cholesterol and prevent heart-related diseases. Cultivation of Aspergillus terreus (ATCC 20542) with carbohydrates or low-value feedstocks such as glycerol produces lovastatin as a secondary metabolite and (+)-geodin as a by-product. An A. terreus mutant strain was developed (gedCΔ) with a disrupted (+)-geodin biosynthesis pathway. The gedCΔ mutant was created by inserting the antibiotic marker hygromycin B (hyg) within the gedC gene that encodes emodin anthrone polyketide synthase (PKS), a primary gene responsible for initiating (+)-geodin biosynthesis. The effects of emodin anthrone PKS gene disruption on (+)-geodin and lovastatin biosynthesis and the production of the precursors acetyl-CoA and malonyl-CoA were investigated with cultures based on glycerol alone and in combination with lactose. The gedCΔ strain showed improved lovastatin production, particularly when cultivated on the glycerol-lactose mixture, increasing lovastatin production by 80% (113 mg/L) while simultaneously inhibiting (+)-geodin biosynthesis compared to the wild-type strain. This study thus shows that suppression of the (+)-geodin pathway increases lovastatin yield and demonstrates a practical approach of manipulating carbon flux by modulating enzyme activity.
  2. Hasan H, Abd Rahim MH, Campbell L, Carter D, Abbas A, Montoya A
    N Biotechnol, 2018 Sep 25;44:64-71.
    PMID: 29727712 DOI: 10.1016/j.nbt.2018.04.008
    The present work describes the application of homologous recombination techniques in a wild-type Aspergillus terreus (ATCC 20542) strain to increase the flow of precursors towards the lovastatin biosynthesis pathway. A new strain was generated to overexpress acetyl-CoA carboxylase (ACCase) by replacing the native ACCase promoter with a strong constitutive PadhA promoter from Aspergillus nidulans. Glycerol and a mixture of lactose and glycerol were used independently as the carbon feedstock to determine the degree of response by the A. terreus strains towards the production of acetyl-CoA, and malonyl-CoA. The new strain increased the levels of malonyl-CoA and acetyl-CoA by 240% and 14%, respectively, compared to the wild-type strain. As a result, lovastatin production was increased by 40% and (+)-geodin was decreased by 31% using the new strain. This study shows for the first time that the metabolism of Aspergillus terreus can be manipulated to attain higher levels of precursors and valuable secondary metabolites.
  3. Hasan H, Abd Rahim MH, Campbell L, Carter D, Abbas A, Montoya A
    Mol Biotechnol, 2022 Jan;64(1):90-99.
    PMID: 34546548 DOI: 10.1007/s12033-021-00393-w
    Lovastatin is an anti-cholesterol medicine that is commonly prescribed to manage cholesterol levels, and minimise the risk of suffering from heart-related diseases. Aspergillus terreus (ATCC 20542) supplied with carbohydrates or sugar alcohols can produce lovastatin. The present work explored the application of metabolic engineering in A. terreus to re-route the precursor flow towards the lovastatin biosynthetic pathway by simultaneously overexpressing the gene for acetyl-CoA carboxylase (acc) to increase the precursor flux, and eliminate ( +)-geodin biosynthesis (a competing secondary metabolite) by removing the gene for emodin anthrone polyketide synthase (gedC). Alterations to metabolic flux in the double mutant (gedCΔ*accox) strain and the effects of using two different substrate formulations were examined. The gedCΔ*accox strain, when cultivated with a mixture of glycerol and lactose, significantly (p 
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links