Displaying all 5 publications

Abstract:
Sort:
  1. Li Y, Cao K, Jenatabadi HS
    Front Psychol, 2023;14:1240910.
    PMID: 37786481 DOI: 10.3389/fpsyg.2023.1240910
    Entrepreneurship in higher education is increasingly valuing entrepreneurial creativity as a significant driver for improving university students' innovative abilities. The purpose of this study was to examine the direct influence of entrepreneurial education and creativity on entrepreneurial intention, as well as the indirect role of entrepreneurial inspiration, mindset, and self-efficiency. This study gathered survey responses from 448 university business students from three Chinese provinces of Shandong, Jiangsu and Zhejiang. The results indicated that entrepreneurial education and creativity have a positive and significant effect on entrepreneurial intent. In addition, the results demonstrated that the combination of entrepreneurial mindset, inspiration, and self-efficacy partially mediates the relationship between entrepreneurial education and entrepreneurial creativity. In addition, additional implications and restrictions are discussed in this article.
  2. Hou L, Tu B, Ling G, Tang T, Cao K, Steiner NK, et al.
    Tissue Antigens, 2006 Jan;67(1):66-9.
    PMID: 16451205
    Strategies to resolve B*18 alleles which carry a deletion in intron 1 close to the 5' end of exon 2 relative to other HLA-B alleles or a null allele mutation in exon 1 and to resolve ambiguities among allele combinations including B*18 are described. B*18 allele frequencies from volunteer donors recruited for two hematopoietic stem cell registries show the presence of two alleles, B*180101 and B*1802, in a population from Singapore and only B*180101 in African-Americans.
  3. Zhang S, Cao K, Wei Y, Jiang S, Ye J, Xu F, et al.
    Plant Physiol Biochem, 2023 Sep;202:107972.
    PMID: 37611487 DOI: 10.1016/j.plaphy.2023.107972
    Brassinosteroids (BRs) are phytohormones that play numerous roles in a plant's response to environmental stress. While BES/BZR transcription factors are essential components in BR signaling, their role in regulating postharvest fruit responses to cold stress is largely unknown. In this study, the application of 24-epibrassinolide (EBR) to peaches alleviated chilling injury (CI) during postharvest cold storage. We further characterized a key BES/BZR gene, PpBZR1, which regulates peach cold resistance. Transient expression PpBZR1 in peaches showed that PpBZR1 inhibits PpVIN2 expression and VIN activity, resulting in an elevated level of sucrose, which protects fruit from CI. Arabidopsis thaliana expressing PpBZR1 that had a high germination and seedling survival rate at low temperatures, which may be due to higher level of sucrose and lower oxidative damage. Mechanistically, we confirmed that PpBZR1 directly binds to the PpVIN2 promoter and functions as a negative regulator for sucrose metabolism. In addition, PpCBF1/5/6 were induced by EBR treatment and AtCBFs were upregulated in PpBZR1 transgenic Arabidopsis thaliana. Combined with previous findings, we hypothesize that PpBZR1 regulates PpVIN2 and may also be mediated by CBF. In conclusion, PpBZR1 expression is induced by EBR treatment during cold storage, which futher inhibite sucrose degradation gene PpVIN2 transcription via direct binding its promoter and indirectly regulating PpVIN2, resulting in slower sucrose degradation and higher chilling tolerance of peach.
  4. Xu H, Detto M, Fang S, Chazdon RL, Li Y, Hau BCH, et al.
    Commun Biol, 2020 06 19;3(1):317.
    PMID: 32561898 DOI: 10.1038/s42003-020-1041-y
    Legumes provide an essential service to ecosystems by capturing nitrogen from the atmosphere and delivering it to the soil, where it may then be available to other plants. However, this facilitation by legumes has not been widely studied in global tropical forests. Demographic data from 11 large forest plots (16-60 ha) ranging from 5.25° S to 29.25° N latitude show that within forests, leguminous trees have a larger effect on neighbor diversity than non-legumes. Where soil nitrogen is high, most legume species have higher neighbor diversity than non-legumes. Where soil nitrogen is low, most legumes have lower neighbor diversity than non-legumes. No facilitation effect on neighbor basal area was observed in either high or low soil N conditions. The legume-soil nitrogen positive feedback that promotes tree diversity has both theoretical implications for understanding species coexistence in diverse forests, and practical implications for the utilization of legumes in forest restoration.
  5. Sreekar R, Katabuchi M, Nakamura A, Corlett RT, Slik JWF, Fletcher C, et al.
    R Soc Open Sci, 2018 Sep;5(9):181168.
    PMID: 30839691 DOI: 10.1098/rsos.181168
    The relationship between β-diversity and latitude still remains to be a core question in ecology because of the lack of consensus between studies. One hypothesis for the lack of consensus between studies is that spatial scale changes the relationship between latitude and β-diversity. Here, we test this hypothesis using tree data from 15 large-scale forest plots (greater than or equal to 15 ha, diameter at breast height ≥ 1 cm) across a latitudinal gradient (3-30o) in the Asia-Pacific region. We found that the observed β-diversity decreased with increasing latitude when sampling local tree communities at small spatial scale (grain size ≤0.1 ha), but the observed β-diversity did not change with latitude when sampling at large spatial scales (greater than or equal to 0.25 ha). Differences in latitudinal β-diversity gradients across spatial scales were caused by pooled species richness (γ-diversity), which influenced observed β-diversity values at small spatial scales, but not at large spatial scales. Therefore, spatial scale changes the relationship between β-diversity, γ-diversity and latitude, and improving sample representativeness avoids the γ-dependence of β-diversity.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links