Displaying all 5 publications

Abstract:
Sort:
  1. Le TT, Lim V, Ibrahim R, Teo MT, Bryant J, Ang B, et al.
    Eur Heart J Cardiovasc Imaging, 2021 05 10;22(6):670-679.
    PMID: 32255186 DOI: 10.1093/ehjci/jeaa040
    AIMS: Hypertensive left ventricular hypertrophy (LVH) is associated with increased cardiovascular events. We previously developed the remodelling index (RI) that incorporated left ventricular (LV) volume and wall-thickness in a single measure of advanced hypertrophy in hypertensive patients. This study examined the prognostic potential of the RI in reference to contemporary LVH classifications.

    METHODS AND RESULTS: Cardiovascular magnetic resonance was performed in 400 asymptomatic hypertensive patients. The newly derived RI (EDV3t, where EDV is LV end-diastolic volume and t is the maximal wall thickness across 16 myocardial segments) stratified hypertensive patients: no LVH, LVH with normal RI (LVHNormal-RI), and LVH with low RI (LVHLow-RI). The primary outcome was a composite of all-cause mortality, acute coronary syndromes, strokes, and decompensated heart failure. LVHLow-RI was associated with increased LV mass index, fibrosis burden, impaired myocardial function and elevated biochemical markers of myocardial injury (high-sensitive cardiac troponin I), and wall stress. Over 18.3 ± 7.0 months (601.3 patient-years), 14 adverse events occurred (2.2 events/100 patient-years). Patients with LVHLow-RI had more than a five-fold increase in adverse events compared to those with LVHNormal-RI (11.6 events/100 patient-years vs. 2.0 events/100 patient-years, respectively; log-rank P 

  2. Abberton M, Batley J, Bentley A, Bryant J, Cai H, Cockram J, et al.
    Plant Biotechnol J, 2016 Apr;14(4):1095-8.
    PMID: 26360509 DOI: 10.1111/pbi.12467
    Agriculture is now facing the 'perfect storm' of climate change, increasing costs of fertilizer and rising food demands from a larger and wealthier human population. These factors point to a global food deficit unless the efficiency and resilience of crop production is increased. The intensification of agriculture has focused on improving production under optimized conditions, with significant agronomic inputs. Furthermore, the intensive cultivation of a limited number of crops has drastically narrowed the number of plant species humans rely on. A new agricultural paradigm is required, reducing dependence on high inputs and increasing crop diversity, yield stability and environmental resilience. Genomics offers unprecedented opportunities to increase crop yield, quality and stability of production through advanced breeding strategies, enhancing the resilience of major crops to climate variability, and increasing the productivity and range of minor crops to diversify the food supply. Here we review the state of the art of genomic-assisted breeding for the most important staples that feed the world, and how to use and adapt such genomic tools to accelerate development of both major and minor crops with desired traits that enhance adaptation to, or mitigate the effects of climate change.
  3. Kole C, Muthamilarasan M, Henry R, Edwards D, Sharma R, Abberton M, et al.
    Front Plant Sci, 2015;6:563.
    PMID: 26322050 DOI: 10.3389/fpls.2015.00563
    Climate change affects agricultural productivity worldwide. Increased prices of food commodities are the initial indication of drastic edible yield loss, which is expected to increase further due to global warming. This situation has compelled plant scientists to develop climate change-resilient crops, which can withstand broad-spectrum stresses such as drought, heat, cold, salinity, flood, submergence and pests, thus helping to deliver increased productivity. Genomics appears to be a promising tool for deciphering the stress responsiveness of crop species with adaptation traits or in wild relatives toward identifying underlying genes, alleles or quantitative trait loci. Molecular breeding approaches have proven helpful in enhancing the stress adaptation of crop plants, and recent advances in high-throughput sequencing and phenotyping platforms have transformed molecular breeding to genomics-assisted breeding (GAB). In view of this, the present review elaborates the progress and prospects of GAB for improving climate change resilience in crops, which is likely to play an ever increasing role in the effort to ensure global food security.
  4. Reid AJ, Blake DP, Ansari HR, Billington K, Browne HP, Bryant J, et al.
    Genome Res, 2014 Oct;24(10):1676-85.
    PMID: 25015382 DOI: 10.1101/gr.168955.113
    Global production of chickens has trebled in the past two decades and they are now the most important source of dietary animal protein worldwide. Chickens are subject to many infectious diseases that reduce their performance and productivity. Coccidiosis, caused by apicomplexan protozoa of the genus Eimeria, is one of the most important poultry diseases. Understanding the biology of Eimeria parasites underpins development of new drugs and vaccines needed to improve global food security. We have produced annotated genome sequences of all seven species of Eimeria that infect domestic chickens, which reveal the full extent of previously described repeat-rich and repeat-poor regions and show that these parasites possess the most repeat-rich proteomes ever described. Furthermore, while no other apicomplexan has been found to possess retrotransposons, Eimeria is home to a family of chromoviruses. Analysis of Eimeria genes involved in basic biology and host-parasite interaction highlights adaptations to a relatively simple developmental life cycle and a complex array of co-expressed surface proteins involved in host cell binding.
  5. Adeloye D, Agarwal D, Barnes PJ, Bonay M, van Boven JF, Bryant J, et al.
    J Glob Health, 2021;11:15003.
    PMID: 34737870 DOI: 10.7189/jogh.11.15003
    BACKGROUND: The global prevalence of chronic obstructive pulmonary disease (COPD) has increased markedly in recent decades. Given the scarcity of resources available to address global health challenges and respiratory medicine being relatively under-invested in, it is important to define research priorities for COPD globally. In this paper, we aim to identify a ranked set of COPD research priorities that need to be addressed in the next 10 years to substantially reduce the global impact of COPD.

    METHODS: We adapted the Child Health and Nutrition Research Initiative (CHNRI) methodology to identify global COPD research priorities.

    RESULTS: 62 experts contributed 230 research ideas, which were scored by 34 researchers according to six pre-defined criteria: answerability, effectiveness, feasibility, deliverability, burden reduction, and equity. The top-ranked research priority was the need for new effective strategies to support smoking cessation. Of the top 20 overall research priorities, six were focused on feasible and cost-effective pulmonary rehabilitation delivery and access, particularly in primary/community care and low-resource settings. Three of the top 10 overall priorities called for research on improved screening and accurate diagnostic methods for COPD in low-resource primary care settings. Further ideas that drew support involved a better understanding of risk factors for COPD, development of effective training programmes for health workers and physicians in low resource settings, and evaluation of novel interventions to encourage physical activity.

    CONCLUSIONS: The experts agreed that the most pressing feasible research questions to address in the next decade for COPD reduction were on prevention, diagnosis and rehabilitation of COPD, especially in low resource settings. The largest gains should be expected in low- and middle-income countries (LMIC) settings, as the large majority of COPD deaths occur in those settings. Research priorities identified by this systematic international process should inform and motivate policymakers, funders, and researchers to support and conduct research to reduce the global burden of COPD.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links