Displaying all 2 publications

Abstract:
Sort:
  1. Haqshenas G, Molano M, Phillips S, Balgovind P, Garland SM, Hawkes D, et al.
    Arch Pathol Lab Med, 2024 Mar 01;148(3):353-358.
    PMID: 37226838 DOI: 10.5858/arpa.2022-0317-OA
    CONTEXT.—: Detection of human papillomavirus (HPV) in formalin-fixed, paraffin-embedded (FFPE) tissues may identify the cause of lesions and has value for the development of new diagnostic assays and epidemiologic studies. Seegene Anyplex II assays are widely used for HPV screening, but their performance using FFPE samples has not been fully explored.

    OBJECTIVE.—: To validate Anyplex II HPV HR Detection (Anyplex II, Seegene) using FFPE samples.

    DESIGN.—: We used 248 stored DNA extracts from cervical cancer FFPE samples collected during 2005-2015 that tested HPV positive using the RHA kit HPV SPF10-LiPA25, v1 (SPF10, Labo Biomedical Products) HPV genotyping assay, manufacturer-validated for FFPE samples.

    RESULTS.—: Of the selected 248 samples, 243 were used in our analysis. Consistent with SPF10 genotyping results, Anyplex II detected all 12 oncogenic types and had an overall HPV detection rate of 86.4% (210 of 243 samples). Anyplex II and SPF10 showed very high agreement for the detection of the 2 most important oncogenic genotypes: HPV 16 (219 of 226; 96.9%; 95% CI, 93.7-98.75) and HPV 18 (221 of 226; 97.8%; 95% CI, 94.9-99.3).

    CONCLUSIONS.—: Overall results showed that both platforms produced comparable HPV genotyping results, indicating the suitability of Anyplex II for FFPE samples. The Anyplex II assay has the added convenience of being an efficient, single-well semiquantitative polymerase chain reaction assay. Further optimization of Anyplex II may enhance its performance using FFPE samples by improving the detection limit.

  2. Velentzis LS, Hawkes D, Caruana M, Brotherton JM, Smith MA, Roeske L, et al.
    Tumour Virus Res, 2023 Jun;15:200255.
    PMID: 36736490 DOI: 10.1016/j.tvr.2023.200255
    Australia's cervical screening program transitioned from cytology to HPV-testing with genotyping for HPV16/18 in Dec'2017. We investigated whether program data could be used to monitor HPV vaccination program impact (commenced in 2007) on HPV16/18 prevalence and compared estimates with pre-vaccination benchmark prevalence. Pre-vaccination samples (2005-2008) (n = 1933; WHINURS), from 25 to 64-year-old women had been previously analysed with Linear Array (LA). Post-vaccination samples (2013-2014) (n = 2989; Compass pilot), from 25 to 64-year-old women, were analysed by cobas 4800 (cobas), and by LA for historical comparability. Age standardised pre-vaccination HPV16/18 prevalence was 4.85% (95%CI:3.81-5.89) by LA; post-vaccination estimates were 1.67% (95%CI:1.21-2.13%) by LA, 1.49% (95%CI:1.05-1.93%) by cobas, and 1.63% (95%CI:1.17-2.08%) for cobas and LA testing of non-16/18 cobas positives (cobas/LA). Age-standardised pre-vaccination oncogenic HPV prevalence was 15.70% (95%CI:13.79-17.60%) by LA; post-vaccination estimates were 9.06% (95%CI:8.02-10.09%) by LA, 8.47% (95%CI:7.47-9.47%) by cobas and cobas/LA. Standardised rate ratios between post-vs. pre-vaccination rates were significantly different for HPV16/18, non-16/18 HPV and oncogenic HPV: 0.34 (95%CI:0.23-0.50), 0.68 (95%CI:0.55-0.84) and 0.58 (95%CI:0.48-0.69), respectively. Additional strategies (LA for all cobas positives; combined cobas and LA results on all samples) had similar results. If a single method is applied consistently, it will provide important data on relative changes in HPV prevalence following vaccination.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links