Displaying all 3 publications

Abstract:
Sort:
  1. Samsudin A, Eames I, Brocchini S, Khaw PT
    J Glaucoma, 2016 Jan;25(1):e39-45.
    PMID: 25719236 DOI: 10.1097/IJG.0000000000000243
    PURPOSE: ExPress devices are available as P50 and P200 models, the numbers related to their luminal diameters in μm. We compared their Poiseuille's Law-based theoretical resistance values with experimental values and correlated these with their luminal dimensions derived from electron microscopy.

    METHODS: Scanning electron microscopy was performed on P50 and P200 devices. Bench-top flow studies were performed to find the resistances of the devices. Devices were also incorporated into a perfused, ex vivo porcine sclera model to test and compare their control of pressure, with and without overlying scleral flaps, and with trabeculectomies.

    RESULTS: The luminal dimensions of the P200 device were 206.4±3.3 and 204.5±0.9 μm at the subconjunctival space and anterior chamber ends, respectively. Those of the P50 device were 205.0±5.8 and 206.9±3.7 μm, respectively. There were no significant differences between the P200 and P50 devices (all P>0.05). The resistances of the P200 and P50 devices were 0.010±0.001 and 0.054±0.002 mm Hg/μL/min, respectively (P<0.05). Equilibrium pressures with overlying scleral flaps were 17.81±3.30 mm Hg for the P50, 17.31±4.24 mm Hg for the P200, and 16.28±6.67 mm Hg for trabeculectomies (P=0.850).

    CONCLUSIONS: The luminal diameters of both devices are externally similar. The effective luminal diameter of the P50 is much larger than 50 μm. Both devices have low resistance values, making them unlikely to prevent hypotony on their own. They lead to similar equilibrium pressures as the trabeculectomy procedure when inserted under the scleral flap.

  2. Samsudin A, Eames I, Brocchini S, Khaw PT
    J Glaucoma, 2016 07;25(7):e704-12.
    PMID: 26561421 DOI: 10.1097/IJG.0000000000000360
    PURPOSE: Intraocular pressure and aqueous humor flow direction determined by the scleral flap immediately after trabeculectomy are critical determinants of the surgical outcome. We used a large-scale model to objectively measure the influence of flap thickness and shape, and suture number and position on pressure difference across the flap and flow of fluid underneath it.

    METHODS: The model exploits the principle of dynamic and geometric similarity, so while dimensions were up to 30× greater than actual, the flow had similar properties. Scleral flaps were represented by transparent 0.8- and 1.6-mm-thick silicone sheets on an acrylic plate. Dyed 98% glycerin, representing the aqueous humor was pumped between the sheet and plate, and the equilibrium pressure measured with a pressure transducer. Image analysis based on the principle of dye dilution was performed using MATLAB software.

    RESULTS: The pressure drop across the flap was larger with thinner flaps, due to reduced rigidity and resistance. Doubling the surface area of flaps and reducing the number of sutures from 5 to 3 or 2 also resulted in larger pressure drops. Flow direction was affected mainly by suture number and position, it was less toward the sutures and more toward the nearest free edge of the flap. Posterior flow of aqueous humor was promoted by placing sutures along the sides while leaving the posterior edge free.

    CONCLUSION: We demonstrate a new physical model which shows how changes in scleral flap thickness and shape, and suture number and position affect pressure and flow in a trabeculectomy.

Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links