Displaying all 2 publications

Abstract:
Sort:
  1. Abu Khurma R, Albashish D, Braik M, Alzaqebah A, Qasem A, Adwan O
    Biomed Signal Process Control, 2023 Jul;84:104718.
    PMID: 36811003 DOI: 10.1016/j.bspc.2023.104718
    Feature Selection (FS) techniques extract the most recognizable features for improving the performance of classification methods for medical applications. In this paper, two intelligent wrapper FS approaches based on a new metaheuristic algorithm named the Snake Optimizer (SO) are introduced. The binary SO, called BSO, is built based on an S-shape transform function to handle the binary discrete values in the FS domain. To improve the exploration of the search space by BSO, three evolutionary crossover operators (i.e., one-point crossover, two-point crossover, and uniform crossover) are incorporated and controlled by a switch probability. The two newly developed FS algorithms, BSO and BSO-CV, are implemented and assessed on a real-world COVID-19 dataset and 23 disease benchmark datasets. According to the experimental results, the improved BSO-CV significantly outperformed the standard BSO in terms of accuracy and running time in 17 datasets. Furthermore, it shrinks the COVID-19 dataset's dimension by 89% as opposed to the BSO's 79%. Moreover, the adopted operator on BSO-CV improved the balance between exploitation and exploration capabilities in the standard BSO, particularly in searching and converging toward optimal solutions. The BSO-CV was compared against the most recent wrapper-based FS methods; namely, the hyperlearning binary dragonfly algorithm (HLBDA), the binary moth flame optimization with Lévy flight (LBMFO-V3), the coronavirus herd immunity optimizer with greedy crossover operator (CHIO-GC), as well as four filter methods with an accuracy of more than 90% in most benchmark datasets. These optimistic results reveal the great potential of BSO-CV in reliably searching the feature space.
  2. Sheta A, Thaher T, Surani SR, Turabieh H, Braik M, Too J, et al.
    Diagnostics (Basel), 2023 Jul 20;13(14).
    PMID: 37510161 DOI: 10.3390/diagnostics13142417
    Obstructive sleep apnea (OSA) is a prevalent sleep disorder that affects approximately 3-7% of males and 2-5% of females. In the United States alone, 50-70 million adults suffer from various sleep disorders. OSA is characterized by recurrent episodes of breathing cessation during sleep, thereby leading to adverse effects such as daytime sleepiness, cognitive impairment, and reduced concentration. It also contributes to an increased risk of cardiovascular conditions and adversely impacts patient overall quality of life. As a result, numerous researchers have focused on developing automated detection models to identify OSA and address these limitations effectively and accurately. This study explored the potential benefits of utilizing machine learning methods based on demographic information for diagnosing the OSA syndrome. We gathered a comprehensive dataset from the Torr Sleep Center in Corpus Christi, Texas, USA. The dataset comprises 31 features, including demographic characteristics such as race, age, sex, BMI, Epworth score, M. Friedman tongue position, snoring, and more. We devised a novel process encompassing pre-processing, data grouping, feature selection, and machine learning classification methods to achieve the research objectives. The classification methods employed in this study encompass decision tree (DT), naive Bayes (NB), k-nearest neighbor (kNN), support vector machine (SVM), linear discriminant analysis (LDA), logistic regression (LR), and subspace discriminant (Ensemble) classifiers. Through rigorous experimentation, the results indicated the superior performance of the optimized kNN and SVM classifiers for accurately classifying sleep apnea. Moreover, significant enhancements in model accuracy were observed when utilizing the selected demographic variables and employing data grouping techniques. For instance, the accuracy percentage demonstrated an approximate improvement of 4.5%, 5%, and 10% with the feature selection approach when applied to the grouped data of Caucasians, females, and individuals aged 50 or below, respectively. Furthermore, a comparison with prior studies confirmed that effective data grouping and proper feature selection yielded superior performance in OSA detection when combined with an appropriate classification method. Overall, the findings of this research highlight the importance of leveraging demographic information, employing proper feature selection techniques, and utilizing optimized classification models for accurate and efficient OSA diagnosis.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links