Displaying all 9 publications

Abstract:
Sort:
  1. Boo, L., Sofiah, S., Selvaratnam, L., Tai, C.C., Pingguan-Murphy, B., Kamarul, T.
    Malays Orthop J, 2009;3(2):16-23.
    MyJurnal
    Purpose:To investigate the feasibilty of using processed human amniotic membrane (HAM) to support the attachment and proliferation of chondrocytes in vitro which it turn can be utilised as a cell delivery vehicle in tissue engineering applications. Methods: Fresh HAM obtained from patients undergoing routine elective ceasarean sections was harvested., processed and dried using either freez drying (FD) or air drying (AD) methods prior to sterilisation by gamma irradiation. Isolated, processed and characterised rabbit autologous chondrolytes were seeded on processsed HAM and cultured for up to three weeks. Cell attachment and proliferation were examined qualitatively using inverted brightfield microcospy. Results: Processed HAM appeared to allow cell attachment when implanted with chrondocytes. Although cells seeded on AD and FD HAM did not appear to attach as strongly as those seeded on glycerol preserved intact human amniotic membrane, these cells to be proliferated in cell culture conditions. Conclusion: Prelimanary results show that processed HAM chondrocyte attachment and proliferation.
  2. George R, Hoi Sen Y, Lim G, Boo LJ
    Med J Malaysia, 1975 Dec;30(2):83-7.
    PMID: 1228386
  3. Boo L, Selvaratnam L, Tai CC, Ahmad TS, Kamarul T
    J Mater Sci Mater Med, 2011 May;22(5):1343-56.
    PMID: 21461701 DOI: 10.1007/s10856-011-4294-7
    The use of mesenchymal stem cells (MSCs) in tissue repair and regeneration despite their multipotentiality has been limited by their cell source quantity and decelerating proliferative yield efficiency. A study was thus undertaken to determine the feasibility of using microcarrier beads in spinner flask cultures for MSCs expansion and compared to that of conventional monolayer cultures and static microcarrier cultures. Isolation and characterization of bone marrow derived MSCs were conducted from six adult New Zealand white rabbits. Analysis of cell morphology on microcarriers and culture plates at different time points (D0, D3, D10, D14) during cell culture were performed using scanning electron microscopy and bright field microscopy. Cell proliferation rates and cell number were measured over a period of 14 days, respectively followed by post-expansion characterization. MTT proliferation assay demonstrated a 3.20 fold increase in cell proliferation rates in MSCs cultured on microcarriers in spinner flask as compared to monolayer cultures (p < 0.05). Cell counts at day 14 were higher in those seeded on stirred microcarrier cultures (6.24 ± 0.0420 cells/ml) × 10(5) as compared to monolayer cultures (0.22 ± 0.004 cells/ml) × 10(5) and static microcarrier cultures (0.20 ± 0.002 cells/ml) × 10(5). Scanning electron microscopy demonstrated an increase in cell colonization of the cells on the microcarriers in stirred cultures. Bead-expanded MSCs were successfully differentiated into osteogenic and chondrogenic lineages. This system offers an improved and efficient alternative for culturing MSCs with preservation to their phenotype and multipotentiality.
  4. Mohd Ali N, Boo L, Yeap SK, Ky H, Satharasinghe DA, Liew WC, et al.
    PeerJ, 2016;4:e1536.
    PMID: 26788424 DOI: 10.7717/peerj.1536
    Decline in the therapeutic potential of bone marrow-derived mesenchymal stem cells (MSC) is often seen with older donors as compared to young. Although hypoxia is known as an approach to improve the therapeutic potential of MSC in term of cell proliferation and differentiation capacity, its effects on MSC from aged donors have not been well studied. To evaluate the influence of hypoxia on different age groups, MSC from young (<30 years) and aged (>60 years) donors were expanded under hypoxic (5% O2) and normal (20% O2) culture conditions. MSC from old donors exhibited a reduction in proliferation rate and differentiation potential together with the accumulation of senescence features compared to that of young donors. However, MSC cultured under hypoxic condition showed enhanced self-renewing and proliferation capacity in both age groups as compared to normal condition. Bioinformatic analysis of the gene ontology (GO) and KEGG pathway under hypoxic culture condition identified hypoxia-inducible miRNAs that were found to target transcriptional activity leading to enhanced cell proliferation, migration as well as decrease in growth arrest and apoptosis through the activation of multiple signaling pathways. Overall, differentially expressed miRNA provided additional information to describe the biological changes of young and aged MSCs expansion under hypoxic culture condition at the molecular level. Based on our findings, the therapeutic potential hierarchy of MSC according to donor's age group and culture conditions can be categorized in the following order: young (hypoxia) > young (normoxia) > old aged (hypoxia) > old aged (normoxia).
  5. Boo L, Yeap SK, Ali NM, Ho WY, Ky H, Satharasinghe DA, et al.
    J Chin Med Assoc, 2019 Nov 15.
    PMID: 31770189 DOI: 10.1097/JCMA.0000000000000226
    BACKGROUND: In vitro 3-dimensional spheroid culture has been widely used as model to enrich CD44CD24 cancer stem cells (CSC) with high ALDH1 activity. Although CD24subpopulation was known to be present in 3D spheroids and may influence cancer drug therapies, its characteristics and CSC properties were not well defined.

    METHODS: In this study, CD24 population from the MCF-7 spheroid was sorted and subjected to spheroid formation test, stem cell markers immunofluorescence, invasion and migration test as well as microRNA expression profiling.

    RESULTS: Sorted MCF-7 CD24 cells from primary spheroids were able to reform its 3D spheroid shape after 7 days in non-adherent culture conditions. In contrast to the primary spheroids, the expression of SOX-2, CD44, CD49f and Nanog were dim in MCF-7 CD24+ cells. Remarkably, MCF-7 CD24 cells were found to show high expression of ALDH1 protein which may have resulted in these cells exhibiting higher resistance against doxorubicin and cisplatin when compared to that of the parental cells. Moreover, microRNA profiling has shown that the absence of cancer stem cell properties were consistent with the downregulation of major cancer stem cells related pathways including Hedgehog, Wnt and MAPK signalling pathways. However, the upregulated pathways such as adherans junctions, focal adhesion and tight junction suggest that CD24+ cells were probably at an epithelial-like state of cell transition.

    CONCLUSION: In conclusion, neglected CD24+ cells in MCF-7 spheroid did not exhibit typical breast CSCs properties. The presence of miRNAs and their analysed pathways suggested that these cells could be a distinct intermediate cell state in breast CSCs.

  6. Boo L, Ho WY, Mohd Ali N, Yeap SK, Ky H, Chan KG, et al.
    PeerJ, 2017;5:e3551.
    PMID: 28717596 DOI: 10.7717/peerj.3551
    Breast cancer spheroids have been widely used as in vitro models of cancer stem cells (CSCs), yet little is known about their phenotypic characteristics and microRNAs (miRNAs) expression profiles. The objectives of this research were to evaluate the phenotypic characteristics of MDA-MB-231 spheroid-enriched cells for their CSCs properties and also to determine their miRNAs expression profile. Similar to our previously published MCF-7 spheroid, MDA-MB-231 spheroid also showed typical CSCs characteristics namely self-renewability, expression of putative CSCs-related surface markers and enhancement of drug resistance. From the miRNA profile, miR-15b, miR-34a, miR-148a, miR-628 and miR-196b were shown to be involved in CSCs-associated signalling pathways in both models of spheroids, which highlights the involvement of these miRNAs in maintaining the CSCs features. In addition, unique clusters of miRNAs namely miR-205, miR-181a and miR-204 were found in basal-like spheroid whereas miR-125, miR-760, miR-30c and miR-136 were identified in luminal-like spheroid. Our results highlight the roles of miRNAs as well as novel perspectives of the relevant pathways underlying spheroid-enriched CSCs in breast cancer.
  7. Boo L, Ho WY, Ali NM, Yeap SK, Ky H, Chan KG, et al.
    Int J Biol Sci, 2016;12(4):427-45.
    PMID: 27019627 DOI: 10.7150/ijbs.12777
    Breast cancer is the second leading cause of cancer-related mortality worldwide as most patients often suffer cancer relapse. The reason is often attributed to the presence of cancer stem cells (CSCs). Recent studies revealed that dysregulation of microRNA (miRNA) are closely linked to breast cancer recurrence and metastasis. However, no specific study has comprehensively characterised the CSC characteristic and miRNA transcriptome in spheroid-enriched breast cells. This study described the generation of spheroid MCF-7 cell in serum-free condition and the comprehensive characterisation for their CSC properties. Subsequently, miRNA expression differences between the spheroid-enriched CSC cells and their parental cells were evaluated using next generation sequencing (NGS). Our results showed that the MCF-7 spheroid cells were enriched with CSCs properties, indicated by the ability to self-renew, increased expression of CSCs markers, and increased resistance to chemotherapeutic drugs. Additionally, spheroid-enriched CSCs possessed greater cell proliferation, migration, invasion, and wound healing ability. A total of 134 significantly (p<0.05) differentially expressed miRNAs were identified between spheroids and parental cells using miRNA-NGS. MiRNA-NGS analysis revealed 25 up-regulated and 109 down-regulated miRNAs which includes some miRNAs previously reported in the regulation of breast CSCs. A number of miRNAs (miR-4492, miR-4532, miR-381, miR-4508, miR-4448, miR-1296, and miR-365a) which have not been previously reported in breast cancer were found to show potential association with breast cancer chemoresistance and self-renewal capability. The gene ontology (GO) analysis showed that the predicted genes were enriched in the regulation of metabolic processes, gene expression, DNA binding, and hormone receptor binding. The corresponding pathway analyses inferred from the GO results were closely related to the function of signalling pathway, self-renewability, chemoresistance, tumorigenesis, cytoskeletal proteins, and metastasis in breast cancer. Based on these results, we proposed that certain miRNAs identified in this study could be used as new potential biomarkers for breast cancer stem cell diagnosis and targeted therapy.
  8. Yeap SK, Mohd Ali N, Akhtar MN, Razak NA, Chong ZX, Ho WY, et al.
    Molecules, 2021 Feb 26;26(5).
    PMID: 33652854 DOI: 10.3390/molecules26051277
    (2E,6E)-2,6-bis-(4-hydroxy-3-methoxybenzylidene)-cyclohexanone (BHMC) is a synthetic curcumin analogue, which has been reported to possess anti-tumor, anti-metastatic, and anti-invasion properties on estrogen receptor (ER) negative breast cancer cells in vitro and in vivo. However, the cytotoxic effects of BHMC on ER positive breast cancer cells were not widely reported. This study was aimed to investigate the cytotoxic potential of BHMC on MCF-7 cells using cell viability, cell cycle, and apoptotic assays. Besides, microarray and quantitative polymerase chain reaction (qPCR) were performed to identify the list of miRNAs and genes, which could be dysregulated following BHMC treatment. The current study discovered that BHMC exhibits selective cytotoxic effects on ER positive MCF-7 cells as compared to ER negative MDA-MB-231 cells and normal breast cells, MCF-10A. BHMC was shown to promote G2/M cell cycle arrest and apoptosis in MCF-7 cells. Microarray and qPCR analysis demonstrated that BHMC treatment would upregulate several miRNAs like miR-3195 and miR-30a-3p and downregulate miRNAs such as miR-6813-5p and miR-6132 in MCF-7 cells. Besides, BHMC administration was also found to downregulate few tumor-promoting genes like VEGF and SNAIL in MCF-7. In conclusion, BHMC induced apoptosis in the MCF-7 cells by altering the expressions of apoptotic-regulating miRNAs and associated genes.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links