Displaying all 2 publications

Abstract:
Sort:
  1. Jessop TS, Ariefiandy A, Purwandana D, Ciofi C, Imansyah J, Benu YJ, et al.
    Proc Biol Sci, 2018 11 14;285(1891).
    PMID: 30429305 DOI: 10.1098/rspb.2018.1829
    Loss of dispersal typifies island biotas, but the selective processes driving this phenomenon remain contentious. This is because selection via, both indirect (e.g. relaxed selection or island syndromes) and direct (e.g. natural selection or spatial sorting) processes may be involved, and no study has yet convincingly distinguished between these alternatives. Here, we combined observational and experimental analyses of an island lizard, the Komodo dragon (Varanus komodoensis, the world's largest lizard), to provide evidence for the actions of multiple processes that could contribute to island dispersal loss. In the Komodo dragon, concordant results from telemetry, simulations, experimental translocations, mark-recapture, and gene flow studies indicated that despite impressive physical and sensory capabilities for long-distance movement, Komodo dragons exhibited near complete dispersal restriction: individuals rarely moved beyond the valleys they were born/captured in. Importantly, lizard site-fidelity was insensitive to common agents of dispersal evolution (i.e. indices of risk for inbreeding, kin and intraspecific competition, and low habitat quality) that consequently reduced survival of resident individuals. We suggest that direct selection restricts movement capacity (e.g. via benefits of spatial philopatry and increased costs of dispersal) alongside use of dispersal-compensating traits (e.g. intraspecific niche partitioning) to constrain dispersal in island species.
  2. Jessop TS, Ariefiandy A, Forsyth DM, Purwandana D, White CR, Benu YJ, et al.
    Ecology, 2020 04;101(4):e02970.
    PMID: 31984486 DOI: 10.1002/ecy.2970
    Apex predators can have substantial and complex ecological roles in ecosystems. However, differences in species-specific traits, population densities, and interspecific interactions are likely to determine the strength of apex predators' roles. Here we report complementary studies examining how interactions between predator per capita metabolic rate and population density influenced the biomass, population energy use, and ecological effects of apex predators on their large mammalian prey. We first investigated how large mammal prey resources and field metabolic rates of terrestrial apex predators, comprising large mammals and the Komodo dragon (Varanus komodoensis), influenced their biomass densities and population energy use requirements. We next evaluated whether Komodo dragons, like apex mammalian predators, exerted top-down regulation of their large mammal prey. Comparison of results from field studies demonstrates that Komodo dragons attain mean population biomass densities that are 5.75-231.82 times higher than that of apex mammalian predator species and their guilds in Africa, Asia, and North America. The high biomass of Komodo dragons resulted in 1.96-108.12 times greater population energy use than that of apex mammalian predators. Nevertheless, substantial temporal and spatial variation in Komodo dragon population energy use did not regulate the population growth rates of either of two large mammal prey species, rusa deer (Rusa timorensis) and wild pig (Sus scrofa). We suggest that multiple processes weaken the capacity of Komodo dragons to regulate large mammal prey populations. For example, a low per capita metabolic rate requiring an infrequent and inactive hunting strategy (including scavenging), would minimize lethal and nonlethal impacts on prey populations. We conclude that Komodo dragons differ in their predatory role from, including not being the ecological analogs of, apex mammalian predators.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links