Displaying all 5 publications

Abstract:
Sort:
  1. Chandrasekaran H, Govind SK, Panchadcharam C, Bathmanaban P, Raman K, Thergarajan G
    Parasit Vectors, 2014;7:469.
    PMID: 25358755 DOI: 10.1186/s13071-014-0469-7
    Blastocystis sp., a widely prevalent intestinal protozoan parasite is found in a wide range of animals, including humans. The possibility of zoonotic transmission to human from birds especially ostriches led us to investigate on the cross infectivity of Blastocystis sp. isolated from the ostrich feces as well as the phenotypic and subtype characteristics. There is a need to investigate this especially with the rising number of ostrich farms due to the growing global ostrich industry.
  2. Tan TK, Lim YAL, Chua KH, Chai HC, Low VL, Bathmanaban P, et al.
    Parasitol Res, 2020 Sep;119(9):2851-2862.
    PMID: 32651637 DOI: 10.1007/s00436-020-06790-5
    The field strain of Haemonchus contortus has a long history of anthelmintic resistance. To understand this phenomenon, the benzimidazole resistance profile was characterized from the Malaysian field-resistant strain by integrating phenotypic, genotypic and proteomic approaches. The faecal egg count reduction test (FECRT) demonstrated that benzimidazole resistance was at a critical level in the studied strain. The primary resistance mechanism was attributed to F200Y mutation in the isotype 1 β-tubulin gene as revealed by AS-PCR and direct sequencing. Furthermore, the protein response of the resistant strain towards benzimidazole (i.e., albendazole) treatment was investigated via two-dimensional difference gel electrophoresis (2D-DIGE) and tandem liquid chromatography-mass spectrometry (LC-MS/MS). These investigations illustrated an up-regulation of antioxidant (i.e., ATP-binding region and heat-shock protein 90, superoxide dismutase) and metabolic (i.e., glutamate dehydrogenase) enzymes and down-regulation of glutathione S-transferase, malate dehydrogenase, and other structural and cytoskeletal proteins (i.e., actin, troponin T). Findings from this study are pivotal in updating the current knowledge on anthelmintic resistance and providing new insights into the defence mechanisms of resistant nematodes towards drug treatment.
  3. Zainalabidin FA, Raimy N, Yaacob MH, Musbah A, Bathmanaban P, Ismail EA, et al.
    Trop Life Sci Res, 2015 Apr;26(1):1-8.
    PMID: 26019746 MyJurnal
    Helminthiasis due to strongyles such as Haemonchus contortus, coccidiosis caused by Eimeria sp. and blood parasite diseases such as theileriosis by Theileria sp. have been reported to cause severe morbidity and mortality annually in small ruminants in Malaysia. The aims of this study were to investigate the prevalence of helminthiasis, coccidiosis and theileriosis and to determine the packed cell volume (PCV) value of small ruminants in Perak, Malaysia. Blood and faecal samples were obtained from a total of 175 animals from 7 small ruminant farms in Kampar, Larut Matang and Selama, Kuala Kangsar and Manjung districts in Perak; the samples were examined for parasitic infestations from April to July 2011. The results of this study show that H. contortus was found in 152 (86.86%) animals, Eimeria sp. was found in 162 (92.57%) animals and the blood protozoa Theileria sp. was found in 25 (14.30%) animals. The PCV values of all of these animals were recorded between 7% and 44%. A total of 42 (24%) animals were anaemic, with a PCV of less than 21%. Continuous monitoring of small ruminant farms will provide important information for assisting farmers with managing the spread of parasitic infections and maintaining the productivity of animals.
  4. Low VL, Tan TK, Lim PE, Domingues LN, Tay ST, Lim YA, et al.
    Vet Parasitol, 2014 Aug 29;204(3-4):439-42.
    PMID: 24912955 DOI: 10.1016/j.vetpar.2014.05.036
    A multilocus sequence analysis using mitochondria-encoded cytochrome c oxidase subunit I (COI), cytochrome B (CytB), NADH dehydrogenase subunit 5 (ND5); nuclear encoded 18S ribosomal RNA (18S) and 28S ribosomal RNA (28S) genes was performed to determine the levels of genetic variation between the closely related species Haematobia irritans Linnaeus and Haematobia exigua de Meijere. Among these five genes, ND5 and CytB genes were found to be more variable and informative in resolving the interspecific relationships of both species. In contrast, the COI gene was more valuable in inferring the intraspecific relationships. The ribosomal 18S and 28S sequences of H. irritans and H. exigua were highly conserved with limited intra- and inter-specific variation. Molecular evidence presented in this study demonstrated that both flies are genetically distinct and could be differentiated based on sequence analysis of mitochondrial genes.
  5. Tan TK, Low VL, Lee SC, Panchadcharam C, Tay ST, Ngui R, et al.
    Jpn. J. Vet. Res., 2015 May;63(2):63-71.
    PMID: 26164875
    The present study was conducted to determine the occurrence of Schistosoma spindale ova and its associated risk factors in Malaysian cattle through a coprological survey. A total of 266 rectal fecal samples were collected from six farms in Peninsular Malaysia. The overall infection rate of S. spindale was 6% (16 of 266). Schistosoma spindale infection was observed in two farms, with a prevalence of 5.4% and 51.9%, respectively. This trematode was more likely to co-occur with other gastro-intestinal parasites (i.e., Dicrocoelium spp., Paramphistomum spp., strongyle, Eimeria spp. and Entamoeba spp.). Chi-square analysis revealed that female cattle are less likely to get S. spindale infection as compared to male cattle (OR = 0.3; 95% CI = 0.08-1.06; p < 0.05), and cattle weighing lower than 200 kg, were significantly at higher risk than those higher than 200 kg (OR = 5; 95% CI = 1.07-24.79; p < 0.05) to the infection. Multivariate analysis confirmed that among the cattle in Malaysia, the age (cattle with two year old and higher: OR = 21; 95% CI = 2.48-179.44; p < 0.05) and weight (weighing 200 kg and lower: OR = 17; 95% CI = 3.38-87.19; p < 0.05) were risk factors for S. spindale infection among Malaysian cattle.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links