Displaying all 2 publications

Abstract:
Sort:
  1. Ebrahimiasl S, Zakaria A, Kassim A, Basri SN
    Int J Nanomedicine, 2015;10:217-27.
    PMID: 25565815 DOI: 10.2147/IJN.S69740
    An antibacterial and conductive bionanocomposite (BNC) film consisting of polypyrrole (Ppy), zinc oxide (ZnO) nanoparticles (NPs), and chitosan (CS) was electrochemically synthesized on indium tin oxide (ITO) glass substrate by electrooxidation of 0.1 M pyrrole in aqueous solution containing appropriate amounts of ZnO NPs uniformly dispersed in CS. This method enables the room temperature electrosynthesis of BNC film consisting of ZnO NPs incorporated within the growing Ppy/CS composite. The morphology of Ppy/ZnO/CS BNC was characterized by scanning electron microscopy. ITO-Ppy/CS and ITO-Ppy/ZnO/CS bioelectrodes were characterized using the Fourier transform infrared technique, X-ray diffraction, and thermogravimetric analysis. The electrical conductivity of nanocomposites was investigated by a four-probe method. The prepared nanocomposites were analyzed for antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl assay. The results demonstrated that the antioxidant activity of nanocomposites increased remarkably by addition of ZnO NPs. The electrical conductivity of films showed a sudden decrease for lower weight ratios of ZnO NPs (5 wt%), while it was increased gradually for higher ratios (10, 15, and 20 wt%). The nanocomposites were analyzed for antibacterial activity against Gram-positive and Gram-negative bacteria. The results indicated that the synthesized BNC is effective against all of the studied bacteria, and its effectiveness is higher for Pseudomonas aeruginosa. The thermal stability and physical properties of BNC films were increased by an increase in the weight ratio of ZnO NPs, promising novel applications for the electrically conductive polysaccharide-based nanocomposites, particularly those that may exploit the antimicrobial nature of Ppy/ZnO/CS BNCs.
  2. Basri SN, Zainuddin N, Hashim K, Yusof NA
    Carbohydr Polym, 2016 Mar 15;138:34-40.
    PMID: 26794735 DOI: 10.1016/j.carbpol.2015.11.028
    Carboxymethyl sago starch-acid hydrogel was prepared via irradiation technique to remove divalent metal ions (Pb, Cu and Cd) from their aqueous solution. The hydrogel was characterized by using Fourier Transform Infrared (FT-IR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The removal of these metal ions was analyzed by using inductively coupled plasma-optic emission spectra (ICP-OES) to study the amount of metal uptake by the hydrogel. Parameters of study include effect of pH, amount of sample, contact time, initial concentration of metal solution and reaction temperature. FTIR spectroscopy shows the CMSS hydrogel absorption peaks at 1741cm(-1), 1605cm(-1) and 1430cm(-1) which indicates the substitution of carboxymethyl group of modified sago starch. The degradation temperature of CMSS hydrogel is higher compared to CMSS due to the crosslinking by electron beam radiation and formed a porous hydrogel. From the data obtained, about 93.5%, 88.4% and 85.5% of Pb, Cu and Cd ions has been respectively removed from their solution under optimum condition.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links