Displaying all 2 publications

Abstract:
Sort:
  1. Mohamad Zamani NS, Wan Zaki WMD, Abd Hamid Z, Baseri Huddin A
    PeerJ, 2022;10:e14513.
    PMID: 36573241 DOI: 10.7717/peerj.14513
    BACKGROUND AND AIMS: A microscopic image has been used in cell analysis for cell type identification and classification, cell counting and cell size measurement. Most previous research works are tedious, including detailed understanding and time-consuming. The scientists and researchers are seeking modern and automatic cell analysis approaches in line with the current in-demand technology.

    OBJECTIVES: This article provides a brief overview of a general cell and specific stem cell analysis approaches from the history of cell discovery up to the state-of-the-art approaches.

    METHODOLOGY: A content description of the literature study has been surveyed from specific manuscript databases using three review methods: manuscript identification, screening, and inclusion. This review methodology is based on Prism guidelines in searching for originality and novelty in studies concerning cell analysis.

    RESULTS: By analysing generic cell and specific stem cell analysis approaches, current technology offers tremendous potential in assisting medical experts in performing cell analysis using a method that is less laborious, cost-effective, and reduces error rates.

    CONCLUSION: This review uncovers potential research gaps concerning generic cell and specific stem cell analysis. Thus, it could be a reference for developing automated cells analysis approaches using current technology such as artificial intelligence and deep learning.

  2. Mohd-Ali B, Chen LY, Shahimin MM, Arif N, Abdul Hamid H, Wan Abdul Halim WH, et al.
    PMID: 37641786 DOI: 10.51329/mehdiophthal1447
    BACKGROUND: Magnetic resonance imaging (MRI) has been used to investigate eye shapes; however, reports involving children are scarce. This study aimed to determine ocular dimensions, and their correlations with refractive error, using three-dimensional MRI in emmetropic versus myopic children.

    METHODS: Healthy school children aged < 10 years were invited to take part in this cross-sectional study. Refraction and best-corrected distance visual acuity (BCDVA) were determined using cycloplegic refraction and a logarithm of the minimum angle of resolution (logMAR) chart, respectively. All children underwent MRI using a 3-Tesla whole-body scanner. Quantitative eyeball measurements included the longitudinal axial length (LAL), horizontal width (HW), and vertical height (VH) along the cardinal axes. Correlation analysis was used to determine the association between the level of refractive error and the eyeball dimensions.

    RESULTS: A total of 70 eyes from 70 children (35 male, 35 female) with a mean (standard deviation [SD]) age of 8.38 (0.49) years were included and analyzed. Mean (SD) refraction (spherical equivalent, SEQ) and BCDVA were -2.55 (1.45) D and -0.01 (0.06) logMAR, respectively. Ocular dimensions were greater in myopes than in emmetropes (all P < 0.05), with no significant differences according to sex. Mean (SD) ocular dimensions were LAL 24.07 (0.91) mm, HW 23.41 (0.82) mm, and VH 23.70 (0.88) mm for myopes, and LAL 22.69 (0.55) mm, HW 22.65 (0.63) mm, and VH 22.94 (0.69) mm for emmetropes. Significant correlations were noted between SEQ and ocular dimensions, with a greater change in LAL (0.46 mm/D, P < 0.001) than in VH (0.27 mm/D, P < 0.001) and HW (0.22 mm/D, P = 0.001).

    CONCLUSIONS: Myopic eyeballs are larger than those with emmetropia. The eyeball elongates as myopia increases, with the greatest change in LAL, the least in HW, and an intermediate change in VH. These changes manifest in both sexes at a young age and low level of myopia. These data may serve as a reference for monitoring the development of refractive error in young Malaysian children of Chinese origin.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links